| 1. Brownian Motion

‘ In 1827 the botanist Brown discovered under his microscope vigorous irregular
motion of smal! particles originating from pollen floating on water [1.1]. He also
observed that very fine particles of minerals undergo similar incessant motion
as if they were living objects. This discovery must have been a great wonder at
that time. The idea of combining such a motion — Brownian motion - with
molecular motion became fairly widespread in the latter half of the nineteenth
century when atomism had not yet been fully recognized as reality. It was the
celebrated work of Einstein, which appeared in 1905, that gave the first clear
-' theoretical explanation of such a phenomenon which could be directly verified
| quantitatively by experiments and thus established the very basic foundation
" of the atomic theory of matter [1.2]. Einstein did not known that Brownian
motion had actually been observed many years before when he first came upon
this idea to verify the reality of the atomic concept. At any rate, Einstein’s
theory had a great impact at that time, finally convincing people of the
theory of heat as molecular motion, and so paved the way to modemn
physics of the twentieth century. It also greatly influenced pure mathe-
matics, that is, the theory of stochastic processes. .

The theory of stochastic processes, called Wiener processes, was initiated
by N. Wiener as a mathematical model of Brownian motion. Some years later
this was combined with Feynman'’s path integral formulation of quantum
mechanics. R. P. Feynman did not know of Wiener's work when he devised
this method independently. It is very instructive that such unconscious coin-
i cidences often arise at very decisive moments in the progress of science in

seemingly far separated disciplines.

The theory of Brownian motion was further developed by P. Langevin,
M. Smoluchowski, G. E. Uhlenbeck, L. S. Omstein, and many others. The
dassical theory was excellently reviewed by Wang and Uhlenbeck (1.3). The
present treatment owes a great deal to this review, which still remains a
standard reference. But our intention is to extend the theory a bit further
and to base on it the developments of nonequilibrium statistical mechanics,
treated in some detail in the following chapters. Grasping physical phe-
nomena as stochastic processes is one of the very fundamental methods of
this approach. Brownian motion is an excellent exampie of this.
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Einstein proved that the diffusion constant D of a Brownian particle is
related to its mobility x by

D=pkT.

This relationship, which is called the Einstein relation, provides us with a
very good basis of experimental verification that Brownian motion is in fact
related to the thermal motion of molecules. It is very important to realize
that this has an even deeper meaning. Namely, it is the first example of one
of the most general theorems of statistical physics, called the fluctuation-
dissipation theorem {1.4]. This theorem is, as shown in Sect. 1.6, one of the most
fundamental cornerstones supporting statistical mechanics of nonequilibrium
states.

30s Fig, 1.1. Browrvan motion
caused by incessant impacts
of gas molecules against a
mirror suspended in a dilute

gas{1.5]

It tums out that Brownian motion is not only limited to the motion of
small particles, but is actually very common. For example, irregular oscil-
latory motion of a small mirror suspended in a dilute gas is caused by in-
cessant impacts of gas molecules (Fig. 1.1). In electrical circuits, thermal
motion of electrons in conductors gives rise to fluctuations of electric
currents as well as potential differences between different components.
When suitably amplified, such fluctuations can be heard by the ear as so-
called therinal noise. More generally, every physical quantity we observe is
accompanied by similar fluctuations due to thermal motion of microscopic
degrees of freedom in matter. In a great many cases, such fluctuations are
small in comparison with the average values of the quantity under observa-
tion and can generally be ignored. However, such fluctuations reflect the
micrascopic motions in the system under study, so analyzing them provides
very important keys for studying the system. In this chapter, the basic
concepts of stochastic processes are discussed, taking mainly the Brownian
motion of Brownian particles as the simplest example. Even though other
examples are not mentioned explicitly, the reader should keep in mind that
these concepts and methods are not confined to the simplest model but are
general and applicable to a wide class of physical phenomena.

1.1 Brownian Motion as a Stochastic Process

Suppose that we observe a Brownian particle under a microscope over a
time interval 0 s ¢ = T and obtain a record of its position x (/) as a function
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of time. For simplicity, we consider in the following only the projection
onto the x axis and treat the problem as one-dimensional motion, but the
essentials are the same for three-dimensional motion. The observations are
repeated in tme to get N readings of the particle position

xl(l)’x2(’)s'-°'xN(l)' (lll)

These readings are all different, that is, the motion of the Brownian particle is
not reproducible.

Then we ask, “what can physics predict about Brownian motion?”
Obviously, unlike in mechanics, we are not able to make deterministic
predictions: we must rather take a probabilistic outlook. The value of the dis-
placement x (¢) of the Brownian particle at time ¢ is probabilistic and each
of the observed series x,(f) is a sample from a statistical ensemble. If we
repeat the observations a great many times to make N very large, we should
be able to find empirically the distribution law obeyed by x (¢).

The stochastic variable (random variable) is x (¢f)!. This is a series of
random variables having ¢ as a parameter. Such a time series of random
variables is generally called a stochastic process. If a continuous observation
is made, a function x(¢) with a continuous parameter { is obtained as a
sample of the process. If observations are made at discrete times

0<Hh<bh..<t,<T, (1.1.2)

then a set of n real numbers

X(fl), X(fz), seny x(’l’l)

is a sample obtained by the observations. If we regard the set as a vector,
then an n-dimensional rea) space R" is the sample space of the process x (¢)
for the selected time points (1.1.2). An element of the sample space may
also be represented by a zig-zag path (Fig. 1.2). One may consider the limit
of very large n and vanishing lengths of time segments to attain a path with
a continuous time. This is an intuitive conclusion, not easily made rigorous
mathematically. In fact, the introduction of a proper measure in the space
consisting of all possible paths x(¢) (0 =t= T) requires considerable
mathematics, into which we shall not go here since the physical aspects of
the problem are emphasized instead.

In understanding Brownian motion as such a stochastic process, how can
x(f) be described in terms of probability theory? Firstly, what is the

1 A sample of the observed values of random variable x (?) is x {¢). This is similar to the
relationship between an observable (dynamical quantity) and its observed value in
quantum mechanics.

A bold-face italic letter is used for a random variable to distinguish it from its
sample value. However, this special lettering will be dispensed with when there is no
fear of confusion between these two concepts.
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On the right-hand side, Pr{...} means the probabulity of the :';e: ed
curly bracket occurring. Next, what is the probability that ¢ 1 X1 dx)
values x(1;) and x (1,) at times 1, and 1, are found in the intervals (x>

+ .

. W, ¥
and (x,x,+ dx;), respectively? For this, the probability density
defined by

Wa(xi, 113 x2, 1) dx, dx;

1.1.4)
=Prixi<x(t) Sxi+dx;,x;<x()= x3+dxy}- (

1n) &
More generally, for a set of observed values x (1), x(i2)s - ¥ ("
‘hfz,...andl,,

Wa(xi,i3x2, 85 ... 5 X, 1) dx, dx; ... dx,, 1,15
=Pf{X]<X(ll)§X’+dth= !,2,...,"}. ( ‘

This is the joint probability distribution for n random variables, x;g:-
x(12), ..., and x(1,). The stochastic process x(t) is defined when such p:,mef
bilities are given for any set of n(n=1,2,...0) time points. fn bility
words, each possible path of the Brownian motion x (/) has a pmb: thes®
assigned 1o it 50 that the probability (1.1.5) is defined as the sum of '/
probabilities for all possible paths going through the gates dxi, dxz: -~ ath
set at the selected time points. This is the basic idea of constructing 3 P
integral, but we shall not go into this topic here. -5)
Many kinds of probabilities can be derived from definitions (113 the
Pacticularly important is the transition probability, which is defined 3 '
probability that the Brownian particle is found at time #, between X1
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x; + dx, when it was at x, at time f,:
Wi (xo, lo; X1, 1) dX,
WI (xOsIO)

Transition probabilities for two time points are most commonly used,
but a more general definition of transition probabilities is

P(xq, 10| X1, 1) dx) = (1.1.6)

P(xo,10|X1, 205 ... Xns 1) dX; ... dx,

Weer (X0, 031, 015 ... 5 Xay 10) dX, ... dx,
= . 1.1.7
wl(x()’t()) ( )

for n observations at n time points when the initial state x, is precisely
defined at time (o.

Brownian motions in reality are complex in many respects, so that
idealiaation and abstraction are necessary to formulate them in physical or
mathematical terms. There are many different levels of such idealization,
each corresponding to a stage of our understanding of their physical nature.
The primary purpose of the discussions in this chapter is to make the
meaning of these levels as clear as possible. Let us now start from the most
simplified model of Brownian motion.

Consider a medium which contains a large number of Brownian
particles and define the particle density as n(x,f). Brownian motion of
particles makes the distribution of particles tend toward uniformity. This
process is called diffusion. Corresponding to the gradient of the density
distribution, a flow is produced

on.

jd="D§';, (1.1.8)

which then induces a change of the density according to

on(x,1)  djs ,&n
a - ax Do )

This is the diffusion equation. When a uniform force field such as
gravitation exists, a uniform flow is produced with the terminal velocity uo
determined by the balance of the driving force K and the frictional force
from the surrounding fluid acting on a particle. This flow is denoted by j,
and is given by

Jx=nuy=—o», (1.1.10)

where m is the mass of the particle and my is the friction constant.
Therefore the total flow is

.. .. _nkK on
]-]K“‘]d"my D PR (1.1.11)
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In the presence of the external field K, the diffusion equation becomes

on(x,r) @ (nK) #n
a  ox \my +D6x’

(1.1.12)

instead of (1.1.9).

Starting from any distribution of density, the particles attain a final
equilibrium distribution after a sufficiently long time. A uniform distribu-
tion of density arises when there is no external field of force, but in a
gravitational field, sedimentation equilibrium arises, represented by

n(x) = n(x,) exp (5—(—);—_7—:{31 (1.1.13)

at temperature 7 of the fluid. This equilibrium is the balance of two flows
Ja and jx, a simple example of derailed balance. This means that the
distribution (1.1.13) makes the flow j in (1.1,11) vanish. Therefore

OB
kT my or
D=pkT (L1.13)

must hold. Here u = 1/my is the mobility, which is the ratio of u, to the
force K. Equation (1.1.14) is nothing but the Einstein relation given in the
introductory section. This relationship is further discussed below; but note
here that it is obtained from a very simple idea.

As long as the particle density is not too high, the interactions between
Brownian particles can be ignored so that the diffusion described by (1.1.9
or 12) is the result of independent particle motion. Namely, the density
n(x,!) attime and the spatial point x is

n(x,1) = [ n(xo.t0) dxo P(x0, 4| x,1) , (1.1.15)
where n(xo, %) is the density at & and x,. The transition probability

P(xo,1]|x,1) satisfies the diffusion equation (we consider Brownian motion
in the absence of an external field)

é &
EP(XO,IO'X,’)'_-D"‘""'P(XO, b

p X, 1) (1.1.16)

because (1.1.9) must be satisfied by n(x, 7) given by (1.1.15) for an arbitrary
initial condition n(x,, o). Then (1.1.16) simply becomes

é
5P(x,:)=0%1>(x,:). (1.1.17)
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The transition probability P(xg,|x,?) is the fundamental solution of
(1.1.17) for the initial condition

P (xo,%)x,8) = 6(x— Xo) (1.1.18)

and is given by

! ex (—L"“)z—) (1.1.19)
VanD(-1) '\ 4DG-w)]" -

If boundaries or sources exist, some appropriate boundary conditions must
be imposed.

This is the simplest possible idealization of Brownian motion. The
probability of finding a particle at x at time ¢ when it was certainly located
at xp at 4 is independent of the knowledge of where the particle was before
. Its history previous to time f is summarized, so to say, in the
information that the particle was located at xq at time /£, expressed by

P(XO,lolx,l) =

P(x',0; xq, to| X, 1) = P(x0, 80| x,1) (t'<k) (1.1.20)

and hence
P(xo0,%|x1,1)5x2, 2)

=P(xo,00]|x1,01) P(x1,01]x2,8) (10<t)<t). (1.1.21)

Namely, the evolution of the process in the time interval (¢, 2) can be
constructed by evolution in the two intervals (¢, /,) and (4, #;), where ¢
is an arbitrary time point between 4 and ¢,. Therefore, integrating over all
possible values of x; at # gives

P(xo. 00| x3,8) =IP(xo,fo | X1, ) dx, P(x,,4 | x2,1) . (1.1.22)

Generally, a stochastic process x.(f) is called Markovian if it satisfies
conditions (1.1.21, 22). That the Brownian motion defined by (1.1.16 or 17)
is Markovian is a consequence of the fact that these equations are first
order with respect to ¢ It can be easily proved directly that the transition
probability (1.1.19) satisfies (1.1.22).

In the presence of an external force field, (1.1.17) is replaced by

oP d &
o =" o WKP+ D=5 P,

but everything stated above remains true, with only minor modifications.
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1.2 The Central Limit Theorem and Brownian Motion

The probability distribution of the displacement X = x — x, over the time
interval (0, ¢) (for simplicity, ¢, =0) (1.1.19) is a normal distribution, or a
Gaussian disiribution, and its variance grows in proportion to time:

(X*)=2D:. (1.2.1)

Now the time interval (0, ) is divided into n (> 1) segments 41, (i=1,2,..., n)
and displacements in each segment are denoted by 4X;. Then naturally

X=3, 4X, and (1.2.2)
i=1
(4Xx;)=0. (1.2.3)
The cxpectation of the total displacement is zero
(X)=0.

Further, displacements in different time segments are statistically indepen-
dent, as implied by (1.1.21):

AX;4X =0 (i *)). (1.2.4)
Therefore it follows from (1.2.2) that
XD =Y {4x}). (1.2.5)
i=l

Taking, for simplicity, equal lengths for the time segments, (4 X?) are then
all equal so that

a4
@y = ngaxty = 40
Comparing this with (1.2.1) gives for the diffusion constant
_{4x%
D= = (1.2.6)

As long as the diffusion model of Sect. 1.1 is true for thc displacement over
each time interval A1, the result (1.2.6) is simply a repetition of (1.2.1). How-
ever, the above consideration has a deeper meaning.

The well-known Gaussian law of errors teaches us that an observation
error X follows a normal distribution if the error is an accumulation of a
large number of small errors. The displacement X of a Brownian particle is
also a sum of a large number of successive small displacements 4X;. There-
fore, we should expect that the distribution law of displacement X over a
sufficiently long time interval ¢ is normal even if the diffusion equation
(1.1.17) loses its validity for displacements in too short a time interval 4¢ in
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fact, Sect. 1.6 shows that (1.1.17, 19) are not valid in general for short time
intervals], and that the variance {X?) is given by (1.2.1) with the diffusion
oonstant D defined by (1.1.14). Then the transition probability P (xq, #o | x, £)
has the form (1.1.19) and satisfies the diffusion equation (1.1.16).

The Gaussian law of errors is contained in a very general theorem of
probability theory called the central limit theorem, which is of fundamental
importance in statistical physics. Therefore let us discuss it with some
generality. In the same way as for (1.2.2), consider a sum of n(> 1) inde-
pendent random variables 4 X, 4X3, ... 4X, and set

X,=4X,+4X; + ... + 4X,. : (1.2.7)

Here 4X,, 4X,, ... and 4X, are assumed to have zero expectation values as
(1.2.3) and the variances

(4X})=a}.
We set
st=6l+ad+...+ 2. (1.2.8)

The central limit theorem now states that if a certain appropriate condition
is met by the random variables 4 X, 4 X3, ... 4X,, the probability distribu-
tion of the random variable

(1.29)

approaches a normal distribution with variance equal to 1; namely, its
distribution density f, (}.) tendsto f(Y) as

1
Ja(Y)— V%;exp(-;*") (1.2.10)

asymptotically as n increases to infinity. Therefore the probability distribu-
tion density P(X,) of X, has the property

X3
P(x")z—VT'_;”—exp(— 2s1) n>1). (1.2.11)

This is the Gaussian law of errors already mentioned.

The essential point of the conditions for the validity of the central limit
theorem is that » random variables 4X,, 4X,, ... and 4X, are all alike and
there are no eminent few that dominate the others. When expressed mathe-
matically, this qualitative condition is formulated as various kinds of suffi-
cient oonditions. There are different forms of the central limit theorem,
such as Lindeberg’s or Ljapunov's, for which the reader is referred to
mathematical textbooks [1.6]. Here our treatment is greatly simplified by
introducing rather restricting conditions.
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R i oD

For a general treatment of such problems, it is most convenient to use

the characteristic function. The characteristic function for a random °

variable x is defined by

@ (8) =€) (1.2.12)

In particular, if the probability distribution density f(x) exists, it jg
expressed by

0@ = [ ¢/wax, (1.2.13)

which is nothing but the Fourier transform of f(x). Then f(x) is obtained
from #(¢&) as its inverse Fourier transform. But it is not necessary that the
density function f(x) exist. General theorems of probability theory state
that the charactenstic function @ (&) exists even if the density function S
does not, and that the probability distribution of x is uniquely determined
from the knowledge of @ (&) [1.7).

If two random variables x and y are independent, then obviously

(el 4Ny = (eitx) (eitr) | (1.2.14)

More generally, the characteristic function of a sum of an arbitrary number
of independent random variables is equal to the product of characteristic
functions of the respective random variables. This is one of the basic
properties of the charactenstic function. The partition function introduceq
in [Ref. 1.8, Chap. 2] as the fundamenta} function in equilibrium statistica)
mechanics is a kind of characteristic function for an unnormalized probability
distribution of microscopic variables (where a real parameter — 8 was used
instead of imaginary i &).

If the moments

(1">=?wr‘f(x)dx (n=0,1.2,..) (1.2.15)
exist for all n’s, the characteristic function @& (£) is analytic in the neigh.
borhood of £=0and is expanded as

® (&) = Z}) LI PN (1.2.16)

Conversely, the moment {x") is then obtained from ¢ (¢) as

-il; [(—gg)"cp (c)]M= (). (1.2.17)

However, it should be remembered that the moments do not necessarily
exist. For example, for the Cauchy distribution

foy=+ 3 _ (1.2.18)

n 1+x*'

st
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the second and higher moments are all divergent. Correspondingly, the
characteristic function is not analytic at { =0 as is clear from

Q&) =e ! (1.2.19)

For such an expansion as (1.2.16) to be possible, it is necessary that the
distribution function f(x) tends to zero sufficiently fast as x — + co.
For example, the characteristic function for the normal distribution

= 2
f(x)= V;z:z_af exp -%gl_) (1.2.20)

is calculated as follows:

di(é)—"——l—?ex( (x—m )2+:x<f)
"vm SN

@

V-m:r § cxpllmé—gic —?:;E-(x—m-—iozé)z dx

Here note the equality

?exp[——(y a)szy Iexp(——)dy 723 (1.2.21)

obtained by shifting the path of integration as shown in Fig. 1.3 from the
path AB on the real axis to CD parallel to AB through point a. Since the
function exp (—y*/2) is analytic everywhere on the complex plane, the
difference of the integrations is due only to integrations along AC and BD,
but these vanish as A and B are pushed to — 00 and oo respectively. There-
fore

. ¢’
<D(é)=exp(nmé-7¢’) (1.2.22)
is the characteristic function for the normal distribution. This simple result
is worth remembering,

\
C D

-— -

xQ

-

A B Fig. 1.3. The integration path to prove (1.2.21)

A cumulant function ¥ (&) is defined by
P (§) =e¥. (1.2.23)

This corresponds to the thermodynamic characteristic function (free energy
divided by kT') in statistical mechanics. It is written as

PE) =Ind(E). | (1.2.24)
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If the expansion (1.2.16) is possible. this may be expanded to

ro =3 5

where the expansion coefficient (x"), is called the nth cumulant and ;g

related to the moments {(x™) m = n by (1.2.23 or 24). Explicit relations are
<X>C = <x>t
=) =P, 6 = (xD)e + (x)e

(Y= () = 3G () + 24 (12-26) §

() = (e +3 (e (xF)e + (X2

for n = 3. Generally, the nth cumulant is expressed in terms of moments not
higher than the nth. Conversely, the nth moment 1s expressed in terms of
cumulants not hlgher than the ath. In particular, {x), is the expectation and .

{x?). is the variance.
For normal distribution (1.2.20), from (1.2.22)

(ye=m, (Ne=cd>, (")=0 (nz3). (1.2.27)

A characteristic feature of the normal distnibution is that cumulants highey +

than the third are all zero.
Now the characteristic function of X,,, (1.2.7), is

0= (e'¥h)= T (&6, (12.28) |

Denoting the cumulant function by y;(£) for 4X; (j=1,2,...) and thay :f'

by ¥, (¢) for X,, then from (1.2.28)

¥, (¢) =jZ! v ().

If the expansions

w(@& =8-S axper L axpes (1.2.29)
are all possible, then
(l¢)3 L
'1‘(6)—~— le AXPd+ . (1.2.30)

from (1.2.7, 8) by assuming {4X;)=0. The characteristic function for Y,
(1.2.9),

(et ey = <einx.ls.> ’
is
(”?)3 . <AX )c
'Iz"' 3! j§ sgj

(e-'"’)—cxp( (1.2.31)

2

x"es (1.2. 25)

LN ek s e s et |t S e e
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obtained by replacing ¢ in (1.2.30) by p/s.. Assume that the mth moments
of AX; are all finite and of the same order of magnitude. Then s increases,
according to (1.2.8), in the order of n with increasing n. Then the mth
cumulant in (1.2.31) tends to zero

O(n)
O(n™?)

-0

from m= 3. Therefore
(i) — g2 (1.2.32)

This shows, as noted previously, that Y, approaches a normal distribution
with the variance equal to |.

In the above we have imposed a very strict condition, namely the
existence of moments at all orders, which is not in fact necessary for proving
the central limit theorem. However, this is not unreasonable to assume for
many physical processes. Whether or not this is allowed in reality, the
central limit theorem indicates that the probabilistic motion of a Brownian
particle is, for a sufficiently long time, described very well by a diffusion
process defined by (1.1.19). For shorter times, there is no reason to expect
the diffusion process to be valid for a physical process of particle motion. If
a particle moves with a velocity v at a certain time ¢, we have to wait a
finite time before we find different velocities. This time . is the correlation
time of the velocity. However, when the time segment A4¢ is much longer
than the correlation time z., displacements in each time segment are re-
garded as independent of each other. So, if 7 is so long that n=1¢/4¢ is much
larger than 1, the total displacement X in (1.2.2) must have a normal
distribution (1.1.19) with the variance

(X¥y=2D1. (1.2.33)

This is a consequence of the central limit theorem.

The random walk problem is often considered as a mode! of Brownian
motion. The simplest model is random walk with steps * a to the right or to
the left randomly at every t. After n steps the displacement x = ma has the
binomial distribution

n!

P,(m)=2—;(

!
2 2
When n is large, this is approximated by a normal distribution. From
(1.2.6) the diffusion constant is

a

D=?. (1.2.35)

This is also easily seen by using the Stirling formula valid for (1.2.34). The
relationship (1.2.35) is, however, more general and not limited to any

-l
i Y '"!) (1.2.34)
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particular random waik model. In three dimensions, it becomes

p= (1.2.36)

6’
where / is the mean free path and 7 the mean free time. Equation (1.2.35)
for a one-dimensional case is recovered by setting /?= 342 Depending on
the way in which definitions are made, extra factors may be introduced into
these equations. Most important is the physical meaning of the diffusion
constant implied by these equations.

1.3 The Langevin Equation and Harmonic Analysis

So far we have concentrated on the displacement of Brownian particles.
However, the physical model should start from the motion itself. The equa-
tion of motion of a particle is, of course,

m—-=F, (1.3.1)

where u is the velocity and F the force acting on the particle from molecules
of the fluid surrounding the Brownian particle. As before, we treat one-
dimensional cases, but three-dimensional cases are the same.

The force £ may be divided into two parts. The first part is the frictional
force and is proportional to the velocity of the particle. If the frictional
coefficient is denoted by my as in (1.1.10), the frictional force is assumed
to be

F.=—myu. (1.3.2)

If the Stokes law is assumed for a spherical particle, for example, the fric-
tional coefficient is

my=606nan, (1.3.3)

where a is the radius of the particle and » the viscosity of the fluid.

The second part of the force is the remainder of the force, F, subtracted
from F, and is regarded as random, independent of the motion of the
particle. This part is called the random force and is hereafter denoted as
R (1)

Then (1.3.1) is written as

du
m—r=—myu+R(i). (1.3.9)

as a stochastic equation.

o e 3
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The same consideration can be applied to Brownian motion in the
presence of a force field, for example, the gravitational field or a harmonic
force binding the particle elastically to the origin. If the potential of the
force is denoted by V, the equation of motion becomes

ap __ 9V _

dx p

—_———— = . 1.3.6
a m u(t) ( )

A set of equations of motion containing a random force, like (1.3.4) or
(1.3.5, 6), iscalled a Langevin equation.

The random force R () is a stochastic process randomly changing in
time. Brownian motion, u(¢) {or p(¢)) and x(¢) are also stochastic processes
driven by [generated by] R (). They are related to R(z) by (1.3.4 or S, 6). If
we consider the force as causing the motion, then the random force R(z)
produces Brownian motion. Thus our problem is to determine the stochastic
processes #(f) and x(/) from knowing R(s). This is what is meant by
solving stochastic equations like (1.3.4) or (1.3.5, 6).

A standard method of solving a stochastic equation is harmonic analysis.
This expresses a motion by a superposition of oscillating functions, which is
an orthodox method for linear systems. Since the environment is considered
to be in a stationary condition with constant temperature and pressure, the
Brownian motion must also be stationary if the particle is aged (kept for a
sufficiently long time) in the environment. In other words, the probability
such as (1.1.5) must be invariant with respect to a shift in time:

Wa(xi, tis X2, 0053 Xna ) = Wa(x ), h + 1,00, 1+ 15 . X0, + 1), (1.3.7)

The processes R(¢), u (#) and x(¢) are stationary in this sense.

Let us consider in general a stationary process z(f), a sampie of which
is z(f) observed over a time interval 0=¢=7 This function z(1) is
expanded in a Fourier series as

z()= ) a,eiot, (1.3.8)
=~
where the frequencies are

w,.=2"7" (n=0%1,%2..), (1.3.9)

corresponding to the interval 7. The function z(¢) is considered real so that
the Fourier coefficient a, has the form

Gun=ay+idy, a-,=an=ar—1dj. (1.3.10)
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The stochastic process z (¢) is now expanded as

()= aei (0=:=T). (13.11)
Then the Fourier coefficient a, in (1.3.8) is a sample of the randomn
variable a, defined by

R :
e = 1Wwe! -3.
e, = ng(t)e dr . (1.3.12)

Equation (1.3.11) shows that the stochastic process £ (/) is expressed by a
set of a countably infinite number of random variables {a,}. For the process
z(1), the probability is defined as explained in Sect. 1.2 and so the proba-
bilities and expectations are also defined for {a,}. The expectation value of
a, isgiven by

T
a.) =—} { (z()) e 't gy |

It follows that
(@)=0 (n#0), (1.3.13)

since {(z(1)) is a constant as it is stationary. For n = 0, obviously
l r
<ao>=“T"£<Z(l)> dr =(2). (1.3.14)

A sample of a; is the time average of a sample z(r) of the process () over
theinterval (0,T):

. T

ao=z(z)fsir z(0) dt . (1.3.15)
1}

Generally, this need not be equal to (z). A process z (1) is called ergodicif
lim z()7=¢z) (1.3.16)

holds.

On the other hand, the expectation {z) is the average of z (f) over the set
of all possible values of z. This set is not necessarily identical with the set of
values of z(¢f) for 0=t=T. It may well be that different subsets are
reached from a different starting state z(0), in which case the time average
becomes different for different z(0). For exampie, a combination of two
distinct processes is obviously nonergodic. A nonergodic process is generally
decomposed into ergodic processes. In most cases, a stationary stochastic
process is already reduced to such a simple one, so that we may hereafter
assume ergodicity. In this sense, a, = {z) = const and we consider z (f)—{z) to

o Tt et i e 8 e o BPSA T B e e

[T —
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assume that

{a)=0 (n=0,%1,..., % c0) (1.3.17)

without losing generality. The averaged strength of the Fourier component
a, is defined by

(la?) = la ) + {Jay ). (1.3.18)

The right-hand side of this expression is the sum of mean square averages
of the real and imaginary parts of the amplitude a,. When a suitable filter
is used to select only the frequencies lying in the interval Aw, the strengths of
these Fourier components are observable. The average intensity 7(w) is

Iwydw= Y, {|a.]*). (1.3.19)
w04

The right-hand side of this expression is a sum over all frequencies
contained in the frequency band. The number of such modes is

do T
=— Aw

2n/T 2=

because the interval dw of successive frequencies in (1.3.9) is 2n/T. We
may suppose {a2) to be continuous in the frequency w, and write (1.3.19) as

1(@) = lim == |a, ) (1.3.20)

to define the intensity spectrum of the process z(f) at frequency w. In fact,
if 2(z) is the noise voltage produced between two terminals of an electrical
network, /{w) is the intensity of the noise heard by filtering frequencies to
a narrow bandwidth 4 w around w. In this sense, I () defined by (1.3.20) is
called the power spectrum of the process z (7).

The power spectrum is obtained by application of the well-known Wiener-
Khintchine theorem [1.9]. The correlation function for the process z(¢) is

d() ={z(to) z(to + 1)). (1.3.21)

This represents the correlation between the observed values of z(f) at two
pointsintime fyand ¢, + tandisindependent of 1, since z(¢) is stationary. The
Wiener-Khintchine theorem asserts that

ad
Iw) === [ 6() e dr (1.3.22)
27 _o
holds. Conversely, it holds that
¢() = | I(w) e* do. (1.3.23)
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This theorem is proved as fotlows. From (1.3.12)

T T
Clan|®> =% Jan Jdu z(t) 2(6)) exp [-iwn (n = n)]. (1.3.24)

In the integrand, the correlation function is dependent only on the time !
difference # — ;. The integration over r, and , is carried out over the
square 0=/n=7, 0=n=T as shown in Fig. 1.4. The integration 5.
divided into two parts. For & > r; the integration variables are changed 4o
h—n=t and 2, for which the Jacobian a(1,, £,)/d (1, ;) = 1. Integration 4
over [, is carried out from 0 to T — 4, resulting in 3

T
g(r~:)¢(:) et dy, (1.3.25) ¢

since the integrand does not depend on #;. Similarly, integration for the part
I <1 yields

T

g(r- 0 (- 1) el dr . (1.3.26)

Rl

Fig. 14. Changing the integration variables jp

PV PUET TS R

A

These results are inserted into (1.3.24) and T is set to infinity. As long gas
the integrals

@ [ o]
fo(x ne¥iordr, (192 1) e¥ivt ar (1.3.27)
0 0
are convergent, then
1 [T . ® :
Iw)=——|léW) e di+ (1) e dr|. (1.3.28)
o 0

Converting the second term to an integral over (— 00, 0) gives (1.3.22).

B _k
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Instead of Fourier-analyzing over a finite time, we may Fourier-analyze
over an infinite time interval and write

2(0)= | a(w) e do (1.3.29)
a(w)=2—ln { () e @ dy (1.3.30)

as Fourier integrals. If z (¢) is real,
a(— w) = a*(w)

is the complex conjugate of a(w). Furthermore, if z(s) is stationary, it
holds that

(a(w)a(@’)) = I(w)é( + w') (1.3.31)
or

(a(w) a* (")) = ] (w)d (v — @), (1.3.32)

where /(w) is the power spectrum given by (1.3.20). In fact, the left-hand
side of (1.3.31) is calculated as

| @ .
{a(w,) a(w;)) = (_in_)z _,Ldfl __L de, p(t,—t)exp(—iw, 1, —1w, ;)

= ]? ‘ﬁ(l)exp(—ia)lf)dt’zi ]‘,’ exp[_i(a,l_{.wz).{]df‘

2n 7y b (A

With (1.3.22) we obtain (1.3.31). It is obvious that (1.3.23) follows conversely
from (1.3.29, 31).

Harmonic analysis is particularly useful for linear stochastic equations
like (1.3.4). We Fourier-expand the random force as a stationary stochastic

process,
R(t)= > R, e, (1.3.33)

n=—@m
In the same way the velocity u(f) of a Brownian particle is expanded as

u(f) = i uele. (1.3.34)

a==a0

Then the stochastic differential equation (1.3.4)
mu(l) =~ myu(!) + R(1) (1.3.35)
is converted into the relation

1 R,
iw,+y m

(1.3.36)
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between the Fourier components. If we write the power spectra of R(¢) and

u(1) as Ir and 1, respectively, we immediately obtain from (1.3.20, 36)

I L 1 Ixw)

I"(w)=|iw+y|1 m w4ty m (1.3.37) |

If the Brownian particle is bound to the origin by an elastic force, the

Langevin equation is assumed to be

dx  drx
o y7—+ wéx——R(t) (1.3.38)

where x is the displacement and wq 1s the natural frequency of the elastic

binding. Torsional oscillation of a small mirror suspended in a dilute gas is |

an example to which harmonic analysis is also directly applicable. The
power spectrum /, of the displacement is easily seen to be

_ 1 Iz (w)
Le)= lwf — w?+iyw|? m?
_ ] Ta (@)
R B s S R (1.3.39)

in the same way as we derived (1.3.37).

The Wiener-Khintchine theorem (1.3.22, 23) shows that knowing the
power spectrum is equivalent to knowing the correlation function. Whep |

Iq (w) is known, (1.3.37 or 39) converts itinto /, (w) or /, (w), so that this solveg
(1.3.35 or 38) to the same extent. As shown in Sect. 1.2, the solution js
complete if R(?) is a Gaussian process.

The nature of the random force R (¢) is considered in more detail in the
following sections. Here we make the simplest possible assumption that the
power spectrum /I, is independent of frequency

IR((D)=]R=mnSt, (l-3-40)

when the spectrum is said to be white. Obviously, from (1.3.23) it follows
that the correlation function of a process having a white power spectrum
has a vanmishingly short correlation time,

dr(h — 1) = <R(f])R(f2)> =2nlgé(t) —1). (1.341)

If the random force can be described by (1.3.41), it follows from (1.3.37) with
(1.3.23) that

@ emrdw !R

a@) =] S— 7 (1.3.42)

PO o NI

Tl et d

o L R A - i . Y B %



1.3 Langevin Equation and Harmonic Analysis 21

namely,

) uia)y =g e, (1.343)

Thus, the correlation function of velocity of a free Brownian particle decays
exponentially in time with the decay constant y. In particular, for ¢, =1,,
(1.3.43) reduces to

7[13

() =—5- . (1.3.44)

If the Brownian particle has been kept for 4 sufficiently long time in the
fluid at temperature 7, the equipartition law

m ity =kT (1.3.45)

must hold for the energy distribution. For (1.3.44) to be consistent with
this,

_mykT
n

Ip (1.3.46)

must hold. In other words, the random force R (if it has a white spectrum)
must have the intensity given by (1.3.46) so that the Langevin equation
(1.3.35) represents free Brownian motion in thermal equilibrium at temper-

ature T.
For harmonic Brownian motion, (1.3.39) leads to

- ei“” dw IR

¢x(!)=_.L (ws_w2)2+},2w2 m2

nlg

A -
=m (COS I+ —=—sInw, I) e "2 (1>0), (1.3.47)

20)1

if I is assumed to be constant (white). For a derivation of this resuilt, the
residues at the poles

i },2 172
w=i7yiwl, where co1=(w3——z) )

of the integrand are calculated. In the limit  — 0, this reduces to

n]k _ kT
miywd mwd’

¢: (0) ={x%) =

(1.3.48)

Thus (1.3.46) again guarantees the equipartition law of energy.
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1.4 Gaussian Processes

A general stochastic process is defined by giving the probabilities (1.1.5) for
all possible sets of #;, 12, ..., 1, (n=1, 2,...). Probabilities of lower hierarchy
are derived from those of higher hierarchy, but the latter generally contaip
new information not contained in the former. The situation becomes
simpler for Markovian processes, in which all higher probabilities are
determined by the transition probability P(x,,;]x,,¢;). This kind of
stochastic process is considered below. Here we take up another class of
simple processes, namely the Gaussian processes. This is an extension of the
normal distribution discussed in Sect. {.2 to stochastic processes. Just as g
normal distribution is defined by its second moment or the variance, g
Gaussian process is completely defined by the correlation function (1.3.21).

A stochastic process z(f) 1s Gaussian if the probability distribution of its
observed values z;,2;,...,2, at n time points f;,!2,...,t, is an n-
dimensional Gaussian (normal) distribution; namely, W, in (1.1.5) has the
form

n A

]
Wiz, 01522, 125 ... 2 1) = Cexp -72 Z ajy (z; — m;) (za — mi) |,

where (14.1)
my= ()= (1)) (14.2)
is the expectation valfue of z() at time ¢ and the matrix
@) =4 (1.4.3)

is positive definite. The elements of its inverse matrix A~' are the
correlation functions of the process z (¢)

(A =z — m) (2 — my))
=lz(8) = )z (1) = (2(16) DD (1.4.9)
In order to see this, we use the characteristic function explained in
Sect. 1.2 in a slightly generalized form. We introduce the parameters

€1, G, ..., L corresponding to the n random variables 2;,z2,.-.,2» and
write the characteristic function of (1.4.1) as

Py ln)= I dz, ... f dzy Walzy, 855 <=5 2ay 1s) €XP (i Zl C}Zj)- (1.4.5)
-0 j=

-Q0

For brevity, we use the vector notations?
Z-_—(ZI,Zz,...,Z,')’ Cg(ChCZ.‘-"CII)

2 Note that bold-faced letters are not used for these vectors to avoid confusion with
random vanables
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and carry out the integration in the following way. Inserting (1.4.1) into
W,, the exponential function in (1.4.5) is rewntten as

exp{-3(z—-m)A(z - m)+ilz]
=exp(i{m—3yAy+i(y)
=exp(i{m—judu—iudv+ivAv+ilu - {v),

setting
m=(m, m,...,m,), 2—-m=y=u+ iv.
Now we choose the vector v by the condition
Av={, namely v=4A"'(.

Then the first-order term of u vanishes, and the integral becomes

D) =exp(im{—4LA47'0) [ duy... | dus Cexp(-3tudu). (1.4.6)

Integration along the real axes of z;, z2,...,2, was here transformed to that
along the real axes of u,, u, ..., u, just as for (1.2.21). The integral can be
explicitly calculated by orthogonal transformation to diagonalize the qua-
dratic form, uAu. But this is not necessary, because we should have @ = 1
for{, =¢(;=...=¢,=0, as is seen by the fact that W, is normalized by the
constant C. Therefore,

¢(Cl;c2|*--$Cn)=exp(ij-zl mj{f 2 Z (A )Jl'CjCk) (]'4'7)

The moment and cumulant definitions introduced by (1.2.15, 16, 25) can
easily be generalized to an n-dimensional random variable (21, 22,-.. Za)-
Namely, the (, 2, ..., r,)th moment is

(pzg...zy=(dz ... [dz, W(zy,...,2,) 20"... 20, (1.4.8)

[W(zy,23...,2,) is the joint distribution of z(, z,, ..., z,] and the charac-
teristic function (1.4.5) is expanded in a power series

Q)= Z 2 (|C|) (ICn)

ry=9 ra=0

atr... 2. (1.4.9)

This gives all the moments, provided that such an expansion is possible.
The cumulant function ¥ (¢) is defined by

@) =exp¥((), ¥OQ=mhao(). (1.4.10)
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The cumulants are defined by

(lCl)‘ (l(»)’ 2

Y= (L4a1y |

if the expansion is possible, where )’ means the omission of the term with
=p=...=r,=0. Cumulants and moments are mutually related by
(1.4.10),e.g.,

(nz) =C(@22).+{a){z2), (1.4.12)
(2123 =21 2329 + (21 {2123)c + 2D {21 23)c
+(23) {1 229 + {21) (22)€z0)-

As evident in (1.2.27), all cumulants, n = 3, are identically zero for g
one-dimensional Gaussian distribution. This statement is generalized to ap
n-dimensional Gaussian distribution for which all cumulants vanish excepy
the first and second, as is seen in (1.4.7) which contains terms only to
second order in {. The coefficients of second-order terms are the variance
matrix (1.4.4). Its element

(2 () 2(t) )e = (2(1) 2 (16)) — 2(4))) 2(tx))
= {[2(5) - ()] [2(24) = {2 (D) (1.4.13)

is the correlation function of z (¢). Therefore, (1.4.7) becomes

n n

@5 6) -exP( Z C,am(r;)--%f_', > b (4, 1) CjCk), (14.19)

)‘-l k=)
where

m() =<z(4)), ¢, )= z() = @[z (%) — 2 (@))]). (1.4.15)

Thus, the process z(7) is completely determined by the expectations and the
correlation functions since the characteristic function is completely defined
by these quantities.

Assume for simplicity that

m(1) =0.

For an arbitrary set of n time points (1, , t2, ..., I»),

0 dd n,
(2(0) ... 2(1,)) = I 0. 10) ?g:gven"n' (1.4.16)
pairing pairs !

holds. This is easily seen by comparing the power series expansion of
(1.4.14) [setting m(4)=0] in {,&,...{» and (1.49). In (1.4.16), the
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summation means the following: we divide the set ¢, 1,, ..., {,(with an even
n, any of these time points may coincide) into pairs and construct the
product of ¢(t;, t,) for this pairing and sum up such terms for all possible
ways of pairing. For example, thus

{z(n) 2(t2) 2 (13) 2(14))
= ¢4, 12) P13, ) + d(41, 13) @(22, ta) + d(11, t4) G(12, 83).

In the definition of the characteristic function (1.4.5), we set
z=z(), =04y (=L12,...,n)

and take the limitof n.+oc0and 44 - Oforty <t <tr...<t, <t to attain
the limit

PN =)Zl L) 2(1) 4y = [ L) 2(e7) ar.

F=1
This defines
® (¢ ()] = <exp if ey () ""D' (1.4.17)

This is the most general form of the characteristic function for the processes
z() and is called the characteristic functional because it contains an
arbitrary function { (7).

In particuiar, if z(¢) is Gaussian, its characteristic functional is

D) =exp |1 [ () m(r) dr =5 [ dn [ dis (1, 1) L (1) Lt

(1.4.18)
corresponding to (1.4.14). In other words, the characteristic functional of a
Gaussian process is completely defined in terms of the expectation m(r)
and the correlation function ¢ (1, £;). If it is stationary, m (f) is a constant so
that it can be set equal to zero without losing generality. Furthermore, the
correlation function ¢ (¢, ;) is a function of #; — ¢; only. Thus the char-
acteristic function has the forin

SUWI=exp [~ T [t~ 1) T8 Ee) |- (1.4.19)

If the characteristic functional ®[{(¢)] is known, a suitably chosen { (t) gives a
desired characteristic function. For example, setting

=2 §dt—1), (1.4.20)

jul
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(1.4.17) is reduced to (1.4.5). By taking a functional derivative of the .
characteristic functional, we can calculate various sorts of expectations’
provided that the derivative is analytic. :

Gaussian processes are rather common in the real world and are |

random variable z () is a sum of independent random variables

)=4u()+A%()+...+42,(). (1.4.21) 4
|
where each component is by itself a stochastic process. Then the charac.-
teristic functional of z () has the form

o] =exp |3 w,(c(r)l} ,

where y; [{(1)] is the cumulant function for the characteristic functional of
4% (t) and is assumed to be expanded as 4

b

W)= i{cuo {4z (1)) dy

l ! 4 F

= J dn iz {az(1) 42(12))e L) L(ea) + ... i

If the sums of cumulants are all of the order of n like ;f.
:

j):.l {4z(1)) = O(n), jZl {dz(n) Az (1)) = O(n), ..., %

:

we change the variable to i
z(1) ;

1) ==~—— a

»() Vn (1.422) -
and obtain its characteristic functional as ]
3

¢ [7())= (exp ifn@)y@) dr‘]>
=axp {3y )
=exp |i ;f n(h) {y(n)) dn - -;—I dn [ di, {y(n) y(12)) n(t) n(12)

+0(n"”)+0(n*')+...], (1.4.23)

o g N
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which approaches the form (1.4.18) as n = c0. Here, O(n~%?) and O(n™")
mean that the higher-order terms in the cumulant expansion become
asymptotically small at these orders. Like the previous discussion of the
central limit theorem in Sect. 1.2, the above argument is not quite
satisfactory as a mathematical proof, but it indicates that we may generally
expect a Gaussian property if a physical process results from a large
number of independent random pcocesses. More generally, even such a strict
independence is not necessarily required for the Gaussian property to hold,
provided that the interaction satisfies certain appropriate conditions not
specified here. Furthermore, there are certainly important cases where the
Gaussian properties no longer hold. Physical processes in the neighborhood
of a phase change are interesting examples. The non-Gaussian nature of
critical fluctuations has been a central topic in recent progress in statistical
mechanics.

Gaussian distributions have remarkable stabilities. If the joint distribu-
tion of the random variables, X,, Xz,... and X, is Gaussian, any linear
combination

’5‘=k2| G Xe

of these vanables also has a Gaussian distribution. Likewise, if z(¢) is a
Gaussian process, any linear transformation of it

b
y()=§C@ r)z(r)dr, (1.4.24)
is also Gaussian because it holds that
b
) =§Cu, r){z(r)) dr, (1.4.25)
b b
P()y ()= fdd §des C(1r, 1) C(ta, 13) C2(11) 2 (£3))e (1.4.26)

and cumulants of y(¢) higher than the third vanish together with those of
2(7). In particular, the Fourier coefficients of z (1) defined by (1.3.12) have
a Gaussian distribution if z(r) is a Gaussian process.

1.5 Brownian Motion Modeled by a Gaussian Process

The Langevin equation (I.3.35) depicts Brownian motion as driven by the
random force R(¢). As an idealization of Brownian motion, R(¢) is assumed
to satisfy the following conditions:
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i) R{s) is a Gaussian process,
il) R(r) has a white spectrum, namely, (1.3.40) holds.

The process u(t) then represents the random change of velocity of 3
Brownian particle and is often called the Ornstein-Uhlenbeck process after
the authors who treated the problem extensively for the first time [1.10].

In fact, these assumptions seem very plausible if Brownian particles are
far larger than the molecules of the surrounding fluid. The force R(/) acting
on a Brownian particle results from a great many impacts from the fluid
molecules, so that the Gaussian property is expected to hold by the centra}
limit theorem, Secondly, the time constant of the motion of fluid moleculesg
will be much shorter than the characteristic time of the Brownian particle
if the mass of a Brownian particle is much larger than that of fluid
molecules. (Rigorously speaking, this is not quite sufficient. As Sect. 1.6
shows, this idealization of R(r) is legitimate only in the limit of very large
mass density of the Brownian particle.) If that is the case, as an idealization
the characteristic time of successive impacts from fluid molecules may be
considered as infinitely short.

The Langevin equation

n'l(t)=—yu«0-m (1.5.1)
m
is easily integrated to give

2O 4. (1.5.2)
m

¢
u(f) =wu(to) €77¢1) 4 f e
[

Obviously this has the form of (1.4.24) so that u(r) must be a Gaussian
process if R (7) is Gaussian.

The power spectrum of u(¢) has already been obtained in (1.3.37) and
its correlation function by (1.3.43) under assumption (ii). Therefore, the
process w(r) is completely defined. The transition probability P (ue, fo]u, r)
to find the velocity « at time ¢+ when the velocity was ug at the initial time ¢,
is derived from (1.5.2) as follows.

The charactenstic functional of u (1) is

2 !
GRADE exp( Eugexp[—y(t— 1)) — ? { dr, ] dt,
Z (1.5.3)
(R(n) R(l:))

xexp[—r(t—1) — y(t = 13)]

This is obtained by replacing z{f) in (1.4.18) by R(r) and ((I') by
£ exp[—y(t—1))/m. However, this is rather obvious from the derivation of
(1.4.18). If (1.3.41) is assumed further for R(f), the second term in the

|
e AR
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exponent in the integrand of (1.5.3) is calculated as

t

fdn fdfz exp[—y(t—n)—y(t- lz)] 5(:, - 1)
lo lo
_2nlg P —ayeermy _ "R ] — e )
= — '{dt e =3 ;
With (1.3.46), then (1.5.3) becomes
(ei(u(ll> = exp [i { o c-y(:-t.) _;’%(l - C-Zy(r-to)) 52] ) ().5.4)

This indicates that «(f) has the Gaussian distribution

P(“o’ ’“I“' ’) N nkT (l — e—Zy(:—:o))llz exXp\— 2kT 1 - e-Zr'(:-:o)
(1.5.5)

which is the transition probability for (o, to) — (u, ). The expectation of
the velocity decays exponentially as

(u (,)) = yy e Y-t (1.5.6)

if the initial value was u, at time 1,. This is, of course, to be expected. The
variance around the expectation grows in time as

() o 1Py = £L (1 — e-2rt-u) (1.5.7)

and approaches the Maxwellian value at ¢+ —» . As shown below, the
distribution (1.5.5) is the fundamental solution of the diffusion equation in
the velocity space

9 4 9 _ykT
EP_G }’u+D.,a )P D.= T (1.58)

The displacement x(f) in the time interval (0,r) is obtained by
integrating (1.5.2) as

P L h R
S i ! dt, £ d:ze"(""ﬂ-—-%)— (1.5.9)

x()=fu(')dt=
0
(to=0, for brevity). Obviously this has a Gaussian distribution if uo and
R(t) are Gaussian. The second term is transformed into

¢ I} vyt ,
3(112]411 o-rin-iy R(2) _ [dr 1—e™ 7" R(1) .
0 13 m 0 ? m
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The characteristic functional of x(t),

: . 1 —e™ ! ] — e =) Rt
<ch1(l)> = <cxp (l ¢ ug : )> <CXp (l & ! dr C)’ (") )>,

m

is calculated similarly as for (1.5.3). Assuming the distribution of ug to be
Maxwellian and using (1.3.44), then

2 _a—n
(ei¢*") = exp [_ g2 <“y> (, e ; )] (1.5.10)
Further we set
2
<u2>=_,f_z and D=(“>=E (1.5.11)
m b4 my

to rewrite (1.5.10) as

. 2 ( = c"')]
ix(N\ = —2 — . 5
{eixt) exp[ 0 2D (¢ > (1.5.12)

This comresponds to the transition probability P(0,0{x, t) of a Browniap |
particle to arrive around x at time ¢ when it was certainly at x =0 at the !
initial time. The probability is Gaussian and is given by i

P(0,0|x,¢) = [41:0 (! . _:—r:)]-m exp [— x? [4D (: - ] —:_”)]-I } R

(1.5.13)
The mean square average (variance) of the displacement in the time |
interval (0, ?) is

(x(1)*)=2D (l -

l_. -yt %]
= ) (1.5.14) |

For a short time 7+ <€ 1/y the distribution of x(r) is Gaussian with the
variance

(= {u) (1.5.15) !

as is seen from (1.5.11, 14). In such a short time, the Brownian particle stj}]
keeps its initial velocity. The result (1.5.15) is simply a reflection of the
initial Maxwellian distribution of the velocity.

For longer times ¢ > 1/y, the Brownian particle repeatedly zig-zags ang
loses the memory of its initial velocity. It is natural to expect thap °
displacements after such a long time become a diffusion process as discussed
in Sect. 1. 1. In fact, (1.5.13) is then approximated by

2
P(0,0]x, 1) z_@n_;”)l_fz exp (— ‘fa‘;) (t> y".) (1.5.16)
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in accordance with (1.1.19). Furthermore, (1.5.11) is identical with (1.1.14).
Namely, the Einstein relation is obtained here again. The above reasoning
is not quite the same as that discussed in Sect. 1.1, but the essential point
lies in the assertion that Brownian motion in a medium in thermal
equilibrium also tends to attain thermal equilibrium.

1.6 The Fluctuation-Dissipation Theorem

In the Langevin equation {1.3.4), the force on a Brownian particle was
divided into the frictional force — m yu and the random force R(¢), between
which a relationship like (1.3.46) exists, indicating that the power intensity
of R(¢) is proportional to the friction coefficient and the thermal energy
k7. We have also seen that the Einstein relation relates the diffusion
constant to the friction coefficient. Both express that such a mechanism of
energy dissipation is closely related to fluctuations in thermal equilibrium
and they are simple examples of a more general principle called the
fluctuation-dissipation theorem [1.4). Chapter 4 deals with a quantum-statist-
ical derivation of this theorem. Here we consider this from the viewpoint of
the Brownian motion theory.

As already mentioned, Brownian motion is not limited to Brownian
particles. It is, generally speaking, a fluctuating motion of a mode in a
macroscopic dynamical system with a very large number of particles or a
large number of degrees of freedom. It is particularly simple for a particle
much heavier than the molecules in a medium or for a mirror in a gas,
described well by the simple Langevin equation discussed in Sect. 1.3.
However, various modifications are required for the Langevin equation to
be applied to more general sorts of Brownian motion. One modification is
to abandon the assumption of a white spectrum for the random force R (¢).
This means, as seen in the following, that retarded friction is accounted for.
This is very necessary for applying the theory to more realistic problems for
which idealizations are not legitimate.

In the Langevin equation (1.3.4) the friction is assumed to be deter-
mined by the instantaneous velocity of the particle. However, in general,
friction will be retarded so that the Langevin equation should be general-
ized to

d p '

—u()=— { yu—=r)u(@)dr + iR(r) + 18 K(n), (1.6.1)
dt . m m

where y(f) expresses the friction retardation. Equation (1.6.1) is called a
generalized Langevin equation. On the right-hand side, R (7) is the random
force and K(¢) is an external force. The random force is zero on average,
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satisf ying the condition
(R{1))=0. (1.6.2)
Suppose now that the external force is periodic as
K(1)= Kycos wi = Re {Kqe'“'} .
Then the average velocity induced by this force is _
Cu(1)) = Re () Koe'e'! | (1.6.3)
where u (w) is the complex mobility for the freguency «w and is given by

= —— m———— 1.6.
H(w miw+ylw)’ (1.6.4)
where
ol=[y) e di (1.6.5)
°

is the Fourier-Laplace transform’ of the retardation function of friction,
This is obtained from the averaged equation of (1.6.1)

d ' ’ ’ ) l 1ot
a—}(u(:))-——_!:y(l—l y{u(r))dr + Re l-';Koe } :

If the particles are charged with e and the particle density is », the curreng
induced by an electric field £ is

j()y=en <U(l)> = Re :92 npu(w)Ey et
50 that the complex conductivity g(w) is

2p i

a(w)=eznu(w)= em iw+}’[w] '

(1.6.6)

In fact, if we write conductivity, or more generally a complex admittance jn
this form, y [w] is usually not constant but depends on the frequency w. If
we treat such a system from the viewpoint of Brownian motion theory, the
retardation function y(r) must be introduced, given as the inverse of (1.6.5).

3 A Fourier-Laplace transform is defined for the integration range (0. c0) in contrast (0 ag
ordinary Founer transform with (-co. oc). Conventional Laplace transforms use g4
complex parameters s instead of i w
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The generalized Langevin equation (1.6.1) is linear so that it can be
treated by harmonic analysis, Sect. 1.3. The Brownian motion follows the
equation

% u(t) =- j (=) u(’ydr+ ;nl— R (1), (1.6.7)

if the external force K is zero and the motion is driven only by the random
force R(¢). Now we Fourier-analyze R(r) and u(¢) as

@® o0
R(=§ Rw)e“do, ul)= [ w(w)e*dw
to obtain

w(w) l R(w)

Tio+y[e] m

from (1.6.7). If R(z) is stationary, #(f) becomes stationary for large enough
1. The power spectra of the two processes are related to each other by

1 Iz (w)

1.6.8
m? |iw+7y[w]?’ ( )

I, (w)=

as seen from (1.3.20).

When the spectrum I (w) for the random force R (¢) is given, (1.6.8)
yields /, (w), from which the correlation function (u (0) u (7)) is obtained by
the Wiener-Khintchine theorem. If it should represent the velocity distribu-
tion in thermal equilibrium, the spectrum I (w) is required to fulfill a
certain condition. The condition is a generalization-of (1.3.46) and is given by

In(@) = '”: T Re fylw]} o (1.6.9)

(R(w) R*(w')) = m:TRe (rw]d(w - o). (1.6.10)
This means

(R(h) R(t))=mkTy(t) — 1) (1.6.11)

for the correlation function of R(¢) as is seen in the following way. The
function y(¢) in (1.6.5) is defined only for ¢ > 0 but is extended to < 0 by
assuming y(¢) = y(— ¢). Then

Relrlol) = | W) ea,
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from (1.6.5). Equation (1.6.11) follows from (1.6.9, [.3.23). In (1.6.9) it must
be assumed that

Re {y[w]} = 0 (for real w), (1.6.12)

since the power spectrum should never become negative.
If y* [w] denotes the complex conjugate of y [w), from (1.6.8, 9)

kT < 1 | i
Cuto) u(to + 1)) = T -L (iw+ S To] +i= ot 7 [w]) e¥ dow .
(1.6.13)

We now show that the contribution (rom the second term of the integrand
vanishes for ¢ > 0. To see this, observe that the function y(w) defined by
(1.6.5) is analytic in the lower half-plane Im {w} < 0. For such a functiop
the dispersion relation discussed in Sect. 3.6 holds. This gives

a ’
M) =— § L g,
‘o VW
Setting w = w’' — 1 @”, then
l [+ ] wn
R =-— .
crlol=—§ dry() o—mmrom

It follows from (1.6.12) that
Re{rlwl} >0 (Im{w} <0)

and
Re{io+y[w)) >0 (Im{w} <0).

Therefore, on the right-hand side of (1.6.13) the first term in the bracket jg
analytic for Im {w} < 0. Correspondingly, the second term is analytic for
Im {®} > 0 and henceforth the integral containing this vanishes in (1.6.13),
because the integral can be supplemented by a large semicircle on the half.
plane Im {w} > 0 on which exp(iwt) tends to zero for 1 >0 and the

integrand is analytic inside the closed path of integration. Thus (1.6.13) ig
simplified to -

kT w—i¢ eiwr

J

M _ e 1w + )’[(0]

{ulto) ulto+ 1)) =

(1.6.1q)

Here the integration path lies just below the real axis of w. If there is no
branch cut for the function y [w], the path can be made a closed contour b

supplementing with a large semicircle as shown in Fig. 1.5. In the limjt
t = 0+, the sum of the residues of (iw + y [w])™' is equal to the residue
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around the infinity w = oo. If the condition

I lim y[w] = finite

is assumed, namely, if the resistance remains finite for w — oo, the residue
is simply equal to one. Therefore the equipartition law results:

. kT
,l.'.'gl (u(to) u(ty + )y = (u?) = —.

Imiwl

Fig. LS. Integration path for (1.6.14).
x The crosses indicate poles of the inte-

~—=Relwl grand

It is interesting to note that the Einstein-Ornstein-Uhlenbeck theory of
Brownian motion as formulated by (1.3.1—~4) has to be modified because of
retardation in viscous resistance due to the hydrodynamic backflow effect.
By a hydrodynamic calculation [1.11), it is shown that (1.5.1) is replaced by

?
where
2 4n e
m‘:m +§ngas=7(00+§)aas
a = 6nga®(v/a)M'3,
f= 6nvea.

Here g is the density of the fluid surrounding the particle, gy is the average
density of the matter composing the particle and v is the kinetic viscosity
equal to n/g. The effective mass m* contains additional inertia due to the
dragging motion of the fluid. Retardation of viscous resistance is caused by
the backflow of fluid. Then

ylw]={B+(riw)? a}/m*.

This function has a branch point at @ =0 and does not satisfy the condition
(1.6.12). Accordingly, the previous argument does not apply. However, the
integral (1.6.14) is easily calculated by transforming the path to the contour

e —
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(ioc~4¢0,i00 + ¢ £>0), giving

<U(lo) u(to+ 1)>= %‘ﬁ(’) »

where
1 2 exp(~2'1) g 2%dz
¢(0) = ?_‘L (z2 - 12 +0222
_1 at"” exp(— {3) {*d{
n “w ((¥1- 12+ 2
with

12
S (%g,+gg/2) , T=pBt/m*.

In the ideal limit of an extremely heavy particle (¢ — 0),¢(¢) is reduced to
exp(— 7) and the retardation effect disappears. For a finite value of g, the
retardation effect shows up in a slow decay of the correlation function

0 ~-51’-V_;r-3’2. (1.6.16)

The presence of such a fong-time tail was first observed by Adler and
Wainwright in a computer simulation of velocity correlation functions {1.12},
Equation (1.6.14) means

p(ew )_'m 1m+)'[a)] kT

J Cutto) uto + 1)) v d (1.6.17)

because it is nothing but the inverse transformation of the above expression,
Equations (1.6.5, 11) can now be written as

my [w)= §<R (to) R (lo + 1)) €7@ dr (1.6.18)

in analogy to (1.6.17), here yielding two fundamental expressions of the
fluctuation-dissipation theorem (F-D theorem).

The first expression gives the complex mobility (complex admittance jn
general) in terms of the Fourier-Laplace transform of the correlation
function of velocity (flow) and is a generalization of the Einstein relatiop
(1.5.11). The second gives the complex resistance (complex impedance ip
general) in terms of the Fourier-Laplace transform of the correlatigq
function of the random force. Formula (1.6.10), which is eqmvalent to this,

y Loy o okt Utai s ooy i Ll
B "'"'J:',(.'r':,\”.&'\Jﬁ;'?'»_}\:!m'fﬁ.i'v'f:-in.'r".--’ PP R r;ﬁs: S fo A P IR ol s bl \:u--J
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was first obtained by Nyquist as the power spectrum of noise voltage caused

by thermal fluctuations in a resistance [1.13]. These two expressions imply
that the response of a system to an external disturbance is related to therma)
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fluctuations spontaneously produced in the system in the absence of
external forces. The relation of the dissipative part of the response to
fluctuations was first recognized by Nyquist (Nyquist theorem) and obtained
the name fluctuation-dissipation theorem. However, it is important to
recognize that the theorem is true both for the dissipative as well as the
dispersive (nondissipative) parts.

To distinguish between the two expressions (1.6.17, 18), we call the first
the F-D theorem of the first kind and the second the F-D theorem of the
second kind. As shown in Chap. 4, the first theorem can be derived from the
linear response theory in a general way [1.14]). The correlation function on
the right-hand side of the equation can be analyzed from microscopic
theories by statistical mechanics. On the other hand, the random force
appearing in the F-D theorem of the second kind is not simple, because the
separation of the force into frictional and random forces is itself a complex
problem of statistical mechanics. In this sense, the F-D theorem of the first
kind should be regarded as basic and the second as a corollary to the first.
In the context of this chapter, the two theorems are related to each other
through the Langevin equation (1.6.1).

The mean square average of the displacement of a Brownian particle in
a time interval (0, ¢) is given by

(@) =(];dn gdlz Cu(t) u(n)).

This is transformed into

2 ©
lim ﬂﬂl = [ (ute) u(to+ ')y dr (1.6.19)
-0 2t 0
as for (1.3.24), since the correlation function {u(t,) u (¢;)) is dependent on
1, — 1, only as a stationary process. Through (1.2.33, 6.17) we obtain

D=pu0)kT.

This shows that the Einstein relation (1.5.11) is a specia} case of the F-D
theorem of the first kind.

In (1.6.1, 7) the retarded friction is expressed as an integral from the
infinite past to the present. It is possible to modify this to

g{-u(r) = _:{y(l -u()dr +%R'(:), (t> n). (1.6.20)

For stationary Brownian motion, the initial time £ in this equation can be
chosen arbitrarily. In that sense the correlation function obtained from this
equation does not depend on the choice of ¢,.
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The random force R(r) is not the same as R(¢) in (1.6.7) and is

o

RO=RWW)— [ y(t—=r)mau(’)dr. (1.6.21)

i
4
L
-;.
L) :

For (1.6.20) to represent the same Brownian motion as represented by
(1.6.7), R(r) must fulfill the conditions

(u(te)) R())=0 for 1>1, and (1.6.22)

R) R(to+1))=R@)RN+1))=mkTy(r). (1.6.23)

This can be seen as follows. From (1.6.17) follow

?(l’l (to) u(to+ 1)) e~ dt = — aj?(u (to) i (to+ 1)) e"i9'dt = (u?) yjw)
. 0

io+y[w]’ |
(16.24)
T e 7 ~iwt Diwylw]
6[ {uto) u(tg+t)) e gy =_<li‘a?—+)’[y5']—-. . (1.6.2s) -
and from (1.6.20)
(ulto) i lto+ )y = — 9t = 1) Cuta) w to+ 1)y drr + L4422 ’fn (o 0)
0

Condition (1.6.22) is necessary for the Laplace transform of the above equa.
tion to be satisfied by (1.6.17, 24). Furthermore,

(R(to) R(to+ 1)) = m? <1'4 (zo)[a(to+ N+ [y=1)ulte+ 1) dz'D ,
0
which yields

?(ﬁ(!o)ﬁ(to +0))e vl di=m? {u?) y[w]
0

by (1.6.17, 24, 25). Therefore (1.6.23) should hold. We can show by direc
calculation [1.15] using (1.6.21) that for an arbitrary ¢, > 1

(R(t) R(to+ 1)) =(R(t) R(h + 1)),

although R(r) is by itself nonstationary since it depends on the arbitrari}

chosen initial time ¢y. Despite such a somewhat unnatural artifice, the form
of the Langevin equation (1.6.20) is sometimes more convenient than tha,
of (1.6.7). As shown in Sect. 2.9, there is a way of transforming the equatioy,

of motion into this form which gives a basis to formulate a statistical theory
of Brownian motion,

A
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Condition (1.6.22) means that the random force R (f) is uncorrelated (in
a weak sense) with u(fg). This does not, however, mean causality, because
R (1) is generally correlated with u(r) in the future as well as in the past.
From (1.6.21) we can show that

=g

u()R(t+1))=m g y(r+)u @) u(r')ydr (1.6.26)
and from (1.6.7)
u()R(+17)) = m:j? y(r+ 1) u(O)u (1)) dr’ . (1.6.27)

Both expressions tend to zero with increasing t to co. But they are not equal
to zero except when there is no retardation, where y () is a delta function and
both correiation functions are zero for T > 0 and equal to 2my {u?Yexp(y1)
for t < 0. In general cases of retarded friction, the random force must be
correlated with the velocity in the past, which is not surprising.




