
1. Brownian Motio_. 
' ' 

In 1827 the botanist Brown discovered under his microscope vigorous irregular 
motion of small particles originating from pollen floating on water [1.1 ]. He also 
observed that very fine particles of minerals undergo similar incessant motion 
as if they were living objects. This discovery must have been a great wonder at 
that time. The idea of combining such a motion- Brownian motion- with 
molecular motion became fairly widespread in the latter half of the nineteenth 
century when atomism had not yet been fully recognized as reality. It was the 
celebrated work of Einstein, which appeared in 1905, that gave the first clear 
theoretical explanation of such a phenomenon which could be directly verified 
quantitatively by experiments and thus established the very basic foundation 
of the atomic theory of matter (1.2] . Einstein did not known that Brownian 
motion had actually been observed many years before when he first came upon 
this idea to verify the reality of the atomic concept. At any rate, Einstein's 
theory had a great impact at that time, finally convincing people of the 
theory of heat as molecular motion, and so paved the way to modern 
physics of the twentieth century. It also greatly influenced pure mathe­
matics, that is, the theory of stochastic processes. 

The theory of stochastic processes, called Wiener processes, was initiated 
by N. Wiener as a mathematical model of Brownian motion. Some years later 
this was combined with Feynman's path integral formulation of quantum 
mechanics. R. P. Feynman did not know of Wiener's work when he devised 
this method independently. It is very instructive that such unconscious coin­
cidences often arise at very decisive moments in the progress of science in 
seemingly far separated disciplines. 

The theory of Brownian motion was further developed by P. Langevin, 
M Smoluchowski, G. E. Uhlenbeck, L. S. Ornstein, and many others. The 
classical theory was excellently reviewed by Wang and Uhlenbeck (1.3]. The 
present treatment owes a great deal to this review, which still remains a 
standard reference. But our intention is to extend the theory a bit further 
and to base on it the developments of nonequilibrium statistical mechanics, 
treated in some detail in the following chapters. Grasping physical phe­
nomena as stochastic processes is one of the very fundamental methods of 
this approach. Brownian motion is an excellent example of this. 
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Einstein proved that the diffusion constant D of a Brownian particle is 
related to its mobility J.l by 

D=J.lkT. 

This relationship, which is called the Einstein relation, provides us with a 
very good basis of experimental verification that Brownian motion is in fact 
related to the thermal motion of molecules. It is very important to realize 
that this has an even deeper meaning. Namely, it is the first example of one 
of the most general theorems of statistical physics, called the fluctuation­
dissipation theorem [1.4]. This theorem is, as shown in Sect. 1.6, one of the most 
fundamental cornerstones supporting statistical mechanics of noneq uilibrium 

states. 

Fig. 1.1. Brownian motion 
caused by incessant impacts 
of gas molecules against a 
mirror suspended in a dilute 
gas [1.5) 

It turns out that Brownian motion is not only limited to the motion of 
:small particles, but is actually very common. For example, irregular oscil­
latory motion of a small mirror suspended in a dilute gas is caused by in­
cessant impacts of gas molecules (Fig. I. I). In electrical circuits, thermal 
motion of electrons in conductors gives rise to fluctuations of electric 
currents as well as potential differences between different components. 
When suitably amplified, such fluctuations can be heard by the ear as so­
called thennal noise. More generaHy, every physical quantity we observe is 
accompanied by similar fluctuations due to thermal motion of microscopic 
degrees of freedom in matter. In a great many cases, such fluctuations are 
small in comparison with the average values of the quantity under observa­
tion and can generally be ignored. However, such fluctuations reflect the 
microscopic motions in the system under study, so analyzing them provides 
very important keys for studying the system. In this chapter, the basic 
concepts of stochastic processes are discussed, taking mainly the Brownian 
motion of Brownian particles as the simplest example. Even though other 
examples are not mentioned explicitly, the reader should keep in mind that 
these concepts and methods are not confined to the simplest model but are 
general and applicable to a wide class of physical phenomena. 

1.1 Brownian Motion as a Stochastic Process 
Suppose that we observe a Brownian particle under a microscope over a 
time interval 0:!! t :s; T and obtain a record of its position x (I) as a function 
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of time. For simplicity, we consider in the following only the projection 
onto the x axis and treat the problem as one-dimensional motion, but the 
essentials are the same for three-dimensional motion. The observations are 
repeated in tme to get N readings of the particle position 

X1 (t), X2 (1), . . •  , XN (t) . (1.1.1) 
These readings are all different, that is, the motion of the Brownian particle is 
not reproducible. 

Then we ask, "what can physics predict about Brownian motion?, 
Obviously, unlike in mechanics, we are not able to make deterministic 
predictions: we must rather take a probabilistic outlook. The value of the dis­
placement x (t) of the Brownian particle at time t is probabilistic and each 
of the observed series x1 (t) is a sample from a statistical ensemble. If we 
repeat the observations a great many times to make N very large, we should 
be able to find empirically the distribution law obeyed by x (t). 

The stochastic variable (random variable) is x (t) 1• This is a series of 
random variables having t as a parameter. Such a time series of random 
variables is generally called a stochastic process. If a continuous observation 
is made, a function x (t) with a continuous parameter 1 is obtained as a 
sample of the process. If observations are made at discrete times 

0 < t1 < t2 • •• < t, < T, ( 1.1.2) 

then a set of n real numbers 

is a sample obtained by the observations. If we regard the set as a vector, 
then ann-dimensional real spaceR" is the sample space of the process x(t) 
for the selected time points (1.1.2). An element of the sample space may 
also be represented by a zig-zag path (Fig. 1.2). One may consider the limit 
of very large nand vanishing lengths of time segments to attain a path with 
a continuous time. This is an intuitive conclusion, not easily made rigorous 
mathematically. In fact, the introduction of a proper measure in the space 
consisting of all possible paths x (t) (0 � t :S T) requires considerable 
mathematic'S, into which we shall not go here since the physical aspects of 
the problem are emphasized instead. 

In understanding Brownian motion as such a stochastic process, how can 
.x(t) be described in tenns of probability theory? Firstly, what is the 

1 A sample of the observed values of random variable x (t) is x (t). This is similar to the 
relationship between an observable (dynamical quantity) and its observed value in 
quantum mechanics. 

A bold-face italic letter is used for a random variable to distinguish it from its 
sample value. However, this special lettering will be dispensed with when there is no 
fear of confusion between these two concepts. 
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(1.1.6) 

Transition probabilities for two time points are most commonly used, 
but a more general definition of transition probabilities is 

P(xo, to lxa. t,; ... ; x,, t,) dx1 • • •  dx,. 

W,+, (xo, to; xh 1,; . . . ; x,, t,) dxa . . . dx, -
W, (xo, to) 

( 1.1.7) 

for n observations at n time points when the initial state x0 is precisely 
defined at time 10• 

Brownian motions in reality are complex in many respects, so that 
idealization and abstraction are necessary to formulate them in physical or 
mathematical terms. There are many different levels of such idealization, 
each corresponding to a stage of our understanding of their physical nature. 
The primary purpose of the discussions in this chapter is to make the 
meaning of these levels as clear as possible. Let us now start from the most 
simplified model of Brownian motion. 

Consider a medium which contains a large number of Brownian 
particles and define the particle density as n (x, t). Brownian motion of 
particles makes the distribution of particles tend toward uniformity. This 
process is called diffusion. Corresponding to the gradient of the density 
distribution, a flow is produced 

on. h=-D OX , (1.1.8) 

which then induces a change of the density according to 

on(x, t) oh D 0'-n 
ot = 

- ox = ox2 
• (1.1.9) 

This is the diffusion equation. When a uniform force field such as 
gravitation exists, a uniform flow is produced with the terminal velocity u0 
determined by the balance of the driving force K and the frictional force 
from the surrounding fluid acting on a particle. This flow is denoted by ix. 
and is given by 

nK ix = nU() =-, (1.1.10) my 
where m is the mass of the particle and my is the friction constant. 
Therefore the total flow is 

nK on j=jK+jd=--D-. my ox (1.1.11) 
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In the presence of the external field K, the diffusion equation becomes 

on(x,r) 
= 

_ � (nK) + D ifln 
ot ax my ox1 

instead of ( 1 .1.9). 

(1.1.12) 

Starting from any distribution of density, the particles attain a final 
equilibrium distribution after a sufficiently long time. A uniform distribu­
tion of density arises when there is no external field of force, but in a 
gravitational field, sedimentation equilibrium arises, represented by 

{ K(x-xo) ) 
n(x) = n(x0) exp \ k T (1.1.13) 

, 

.. 
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t 

•• 
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-� at temperature T of the fluid. This equilibrium is the balance of two flows � }d and jK, a simple example of derailed balance. This means that the l 
distribution ( 1.1. B) makes the flow j in (I. l .I [) vanish. Therefore 'f 

D 1 
-=-

kT my 
D=p.kT 

or 

(1.1.14) 

must hold. Here J.l = limy is the mobility, which is the ratio of u0 to the 
force K. Equation (1.1.14) is nothing but the Einstein relation given in the 
introductory section. This relationship is further discussed below; but note 
here that it is obtained from a very simple idea. 

As long as the particle density is not too high, the interactions between 
Brownian particles can be ignored so that the diffusion described by (1.1.9 
or 12) is the result of independent particle motion. Namely� the density 
n (x, t) at time t and the spatial point x is 

n(x,l) = J n(xo, to) dxoP(xo, tolx,t), ( I. I. IS) 

where n (x0, t0) is the density at 10 and x0• The transatJon probability 
P(xo, 10 I x, t) satisfies the diffusion equation (we consider Brownian motion 
in the absence of an external field) 

iJ & 
01 

P(xo, to I x, t) = D iJx
l P (x0, 10 l x, r) (1.1.16) 

because ( 1.1.9) must be satisfied by n (x,t) given by ( 1.1.15) for an arbitrary 
initial condition n (x0, r0). Then ( 1.1.16) simply becomes 

iJ ifl 
01 

P(x, t) = D ox2 P(x, t). ( 1.1. I 7) 

i 1 

I 

.. 
I 
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The trans1t10n probability P(x0, to I x, t) is the fundamental solution of 
{1.1.17) for the initial condition 

P(xo, to I x, t) = <5(x-Xo) 

and is given by 

I ( (x-xo)2 ) 
P(xo ,tolx,t)= V exp -4D(t-lo) . 4n D (t- to) 

(1.1.18) 

(1.1.19) 

If boundaries or sources exist, some appropriate boundary conditions must 
be imposed. 

This is the simplest possible idealization of Brownian motion. The 
probability of finding a particle at x at time t when it was certainly located 
at x0 at t0 is independent of the knowledge of where the particle was before 
t0• Its history previous to time to is summarized, so to say, in the 
information that the particle was located at x0 at time t0, expressed by 

P(x', t'; Xo, to I x, t) = P (xG, lo I x, 1) (t' <to) 

and hence 

P(Xo, lo I X�t Ia ;x2, /2) 

=P(xo, tolxt, It) P(x,, ttl x2, /2) (to< It< t2). 

(1.1.20) 

{1.1.21) 

Namely, the evolution of the process in the time interval (to, t2) can be 
constructed by evolution in the two intervals (t0, 11) and (lt. t2), where t1 
is an arbitrary time point between t0 and t2• Therefore, integrating over all 
possible values of x1 at t1 gives 

(1.1.22) 

Generally, a stochastic process x.(t) is called Markovian if it satisfies 
conditions (1.1.21, 22). That the Brownian motion defined by (1.1.16 or 17) 
is Markovian is a consequence of the fact that these equations are first 
order with respect to t. It can be easily proved directly that the transition 
probability (I. I. I 9) satisfies ( 1.1.22). 

In the presence of an external force field, ( 1.1.17) is replaced by 

aP a a2 
-=--(pKP)+D-P 01 ox ox2 ' 

but everything stated above remains true. with only minor modifications. 
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o::� the time I interval (0, t) (for simplicity, t0 = 0) (1.1. t 9) is a normal distribution, or a � Gaussian distribution, and its variance grows in proportion to time: it .)1 
(X'l) = 2Dt. (1.2.1) 

Now the time interval (0. t) is divaded into n (� 1) segments t1 t1 (i = I, 2 •. . .  , ,. ) 
and displacements in each segment are denoted by AX,. Then naturally 

and (1.2.2) 

� 3 
! 
1 

(AX;)=O. (1.2.3) � 

The expectation of the total displacement is zero 
(X)= 0. 

Further, displacements in different time segments are statistically indepen­
dent, as implied by (1. 1.21): 

(AX;.1.\j) = 0 (i * j). (1.2.4) 

Therefore it follows from ( 1.2.2) that 
n 

(X2) = L (L1X1). (1.2.5) 
i•l 

Taking, for simplicity, equal lengths for the time segments, (AX]) are then 
all equal so that 

(X'l) = n(AX'l) = t (A,¥2) . L1t 
Comparing this with (1.2.1) gives for the diffusion constant 

D= (A..t2) 
2At . (1.2.6) 

As long as the diffusion model of Sect. 1.1 is true for the displac,ement over 
each time interval At, the result (1.2.6) is simply a repetition of (1.2.1 ). How­
ever, the above consideration has a deeper meaning. 

The well-known Gaussian law of errors teaches us that an observation 
error X follows a normal distribution if the error is an accumulation of a 
large number of small errors. The displacement X of a Brownian particle is 
also a sum of a large number of successive smaiJ displacements AX;. There­
fore, we should expect that the distribution law of displacement X over a 
sufficiently long time interval t is normal even if the diffusion equation 
(1.1.17) loses its validity for displacements in too short a time interval .1 t [in 

· . . ,. 
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fact, Sect. 1.6 shows that (1.1.17, 19) are not valid in general for short time 
intervals], and that the variance (X2) is given by (1.2.1) with the diffusion 
oonstant D defined by (1.1.14). Then the transition probability P (xo, to I x, t) 
has the form ( 1.1.19) and satisfies the diffusion equation ( 1.1.16). 

The Gaussian law of errors is contained in a very general theorem of 
probability theory called the centra/limit theorem, which is of fundamental 
importance in statistical physics. Therefore let us discuss it with some 
generality. In the same way as for (1.2.2), consider a sum of n (� 1) inde­
pendent random variables J X1, Lf X2, • • •  J X11 and set 

(1.2. 7) 

Here JXh AX2, . . . and AX,. are assumed to have zero expectation values as 
(1.2.3) and the variances 

(AX])= cij. 
We set 

s?.=cri+o}+ . . .  +�. (1.2.8) 

The central limit theorem now states that if a certain appropriate condition 
is met by the random variables AX., AX2, ... AX,., the probability distribu­
tion of the random variable 

Y. - X,. ,.- Sn (1.2.9) 

approaches a normal distribution with variance equal to I; namely, its 
distribution density J,. ( Y,.) tends to f ( Y) as 

[.(Y)-> y�, cxp(-T r') (1.2.10) 

asymptotically as n increases to infinity. Therefore the probability distribu­
tion density P (X11) of X11 has the property 

I ( X� ) P(Xn) � V21lSn exp - 2� 
(n � I). 

This is the Gaussian law of errors already mentioned. 

( 1.2.11) 

The essential point of the conditions for the validity of the central limit 
theorem is that n random variables AX1, &X2, • • •  and AX,. are all alike and 
there are no eminent few that dominate the others. When expressed mathe­
matically, this qualitative condition is fonnulated as various kinds of suffi­
cient oonditions. There are different forms of the central limit theorem, 
such as Lindeberg's or Ljapunov's, for which the reader is referred to 
mathematical textbooks [1.6}. Here our treatment is greatly stmplified by 
introducing rather restricting conditions. 
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For a general treatment of such problems, it is most convenient to use . 
the characteristic function. The characteristic function for a randolll 
variable xis defined by 

C/>(�) = (ei�x). (1.2.12) 
In particular, if the probability distribution density f(x) exists, it is 
�expressed by 

C() 
c1> (�) = J e'l->'f(x) dx, (1.2.13) 

-co 

which is nothing but the Fourier transform of f(x). Then f(x) is obtained 
from 4> (�) as its inverse Fourier transform. But it is not necessary that tbe 
density function f(x) exist. General theorems of probability theory state 
that the characteristic function C/J (�) exists even if the density function f 
does not, and that the probability distribution of x is uniquely determined 
from the knowledge of cp ( <) (I. 7). 

If two random variables .randy are independent, then obviously 
(ei�(x+y))=(ei�x)(ei("). {1.2.14) 

More generally, the characteristic function of a sum of an arbitrary number 
of independent random variables is equal to the product of characteristic 
functions of the respective random variables. This is one of the basic 
properties of the characteristic function. The partition function introduced_ 
in [Ref. 1.8, Chap. 2] as the fundamental function in equilibrium statistical 
mechanics is a kind of characteristic function for an unnormalized probab ility 
distribution of microscopic variables (where a real parameter -P was USed 
instead of imaginary i c;). 

If the moments 
CQ 

(x") = J x" f(x) dx (n = 0, J, 2, ... ) 
-CQ 

( 1.2.15) 

exist for all n's, the characteristic function 4>(c!) is analytic in the neigh­
borhood of c; = 0 and is expanded as 

Conversely, the moment (x") is then obtained from 4> (c!) as 

i� [( � r 4l w L. = < x") . 

(1.2.16) 

(1.2.17) 

However, it should be remembered that the moments do not necessarily 
exist. For example, for the Cauchy distribution 

1 I 
f(x) =-; 1 + x2 , (1.2.18) 
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the second and higher moments are all divergent. Correspondingly, the 
characteristic function is not analytic at e = 0 as is clear from 

cr>(�) = e-1(1. (1.2.19) 

For such an expansion as (1.2.16) to be possible, it is necessary that the 
distribution fu nc tion f(x ) tends to zero sufficiently fast as x- ± oo. 

For example. the characteristic function for the normal distribution 

f(x)� � exp{- (x;;>') (1.2.20) 

is calculated as follows: 

1 co { (x - m)2 ) 
4'>(�) = � J exp - + ixe dx 

2x<J -co 2cr 

=--1 exp [ime- q2 e2 --1-2 (x- m- ia-2<)2] dx. V2n-<1 - co  
2 2 U 

Here note the equality 

J exp[--
1 {y-a)2 l dy= J exp{-y)dy= yi;r 

-co 2 -co 2 
(1.2.21) 

obtained by shifting the path of integration as shown in Fig. 1.3 from the 
path AB on the real axis to CD parallel to AB through point a. Since the 
function exp(-y2/2) is analytic everywhere on the complex plane, the 
difference of the integrations is due on ly t o int eg ra tions along AC and BD, 
but these vanish as A and Bare pushed to- oo and oo respectively. There­
fore 

cJ> ( <) = exp (i m e -; e2) { 1.2.22) 

is the characteristic function for the normal distribution. This simple result 
is worth remembering. 

�--------�- x--------� 
-1 1-� C I a D 

A B Fig.l.3. The integration path to prove (1.2.21) 

A cumulant function V'(<) is defined by 

<I>(<)= e�(�l. (1.2.23) 

This corresponds to the thermodynamic characteristic function (free energy 
divided by kT) in stati sti cal mechanics. It is writt en as 

(1.2.24) 
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If the expansion (1.2.16) is possible, this may be expanded to 

CX) (i �)" 
IJ'(�) = L ----;- (x")c, 

n•l n. 

where £he expansion coefficient (x")c is called the nth cumulant and 
related to the moments (x'") m :s n by ( t .2.23 or 24). Explicit relations are 

(x)c = (x), 

(x2)c = (x2)- (x)2, (x2) = (x2)c + (x)� 
(xl)c = (x3)- 3(x2) (x) + 2 (x}l 
(x3) = (x3)c + 3 (x), (x2), + (x)� 

for n s 3. Generally, the nth cumulant is expressed in terms of moments DOt 
higher than the nth. Conversely, the nth moment is expressed in terms of 
cumulants not higher than the nth. In particular. (x)c is the expectation and (x2), is the variance. 

For nonnal distribution ( 1.2.20), from ( 1.2.22) 

(x)c = m, (x2)c = rr, (x")c = 0 (n � 3). 

A characteristic feature of the normal distribution is that cumulants higher 
than the third are aJI zero. 

Now the characteristic function of Xn, ( 1.2. 7), is 

) .. 1 
(1.2.28) 

Denoting the cumulant function by f//J(<) for .dX1 U = 1, 2, . . .  ) and that 
by V',(�) for X,, then from (1.2.28) 

n 

V{(�) = L: l/lj(<!). 
J•l 

If the expansions 

-. <!2 (i�)l 3 1/1(<!)- t� (.dA})c- 2 (A�),+ 3! (AX}),+ ... 
are all possible, then 

( 1.2.29) 

�2 (i �)3 " IJI,.(e)=-- s: + - 2: (L1Xj)c + . .. (1.2.30) 
2 3! J= 1 

from (1.2.7, 8) by assuming (AX1) = 0. The characteristic function for � � 

( 1.2.9), 

(ei,r.) = (ei11x .. ts..) , 

is 

(1.2.31) 
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obtained by replacing� in (1.2.30) by 'lis,. Assume that the mth moments 
of Ll..t} are aU finite and of the same order of magnitude. Then s� increases, 
according to (1.2.8), in the order of n with increasing n. Then the mth 
cumulant in (1.2.31) tends to zero 

O(n) 
O(nm12)-+ 0 

from m � 3. Therefore 

(ei"Y•) __. e-rft2 (1.2.32) 

This shows, as noted previously, that Y, approaches a normal distribution 
with the variance equal to 1. 

In the above we have imposed a very strict condition, namely the 
existence of moments at aU orders, which is not in fact necessary for proving 
the central limit theorem. However, this is not unreasonable to assume for 
many physical processe s. Whether or not this is allowed in reality, the 
central limit theorem indicates that the probabilistic motion of a Brownian 
particle is, for a sufficiently long time, described very well by a diffusion 
process defined by (1.1.19). For shorter times, there is no reason to expect 
the diffusion process to be valid for a physical process of particle motion. If 
a particle moves with a velocity u at a certain time t, we have to wait a 

finite time before we find different velocities. This time 'tc is the correlation 
time of the velocity. However, when the time segment At is much longer 
than the correlation time Tc, displacements in each time segment are re­
garded as independent of each other. So, if 1 is so long that n == t/ Lit is much 
larger than 1, the total displacement X in (1.2.2) must have a normal 
distribution (1.1.19) with the variance 

(1.2.33) 

This is a consequence of the central limit theorem. 
The random walk problem is often considered as a model of Brownian 

motion. The simplest model is random walk with steps +a to the right or to 
the left randomly at every r. After n steps the displacement x = m a has the 
binomial distribution 

n! (n+m n-m )-• 
P,(m)= 2�e 2 ! 2 ! (1.2.34) 

When n is large, this is approximated by a normal distribution. From 
(1.2.6) the diffusion constant is 

cr 
D=TC· (1.2.35) 

This is also easily seen by using the Stirling formula valid for (1.2.34). The 
relationship (1.2.35) is, however, more general and not limited to any 
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particular random walk model. In three dimensions, it becomes 

p 
D=-

6r' 
(1.2.36) 

where I is the mean free path and r the mean free time. Equation (1.2.35) 
for a one·dimensional case is recovered by setting 12 = 3 a2• Depending on 
the way in which definitions are made, extra factors may be introduced into 
these equations. Most important is the physical meaning of the diffusion 
constant implied by these equations. 

1.3 The Langevin Equation and Harmonic Analysis 
So far we have concentrated on the displacement of Brownian particles. 
However, the physical model should start from the motion itself. The equa­
tion of motion of a particle is, of course, 

du 
m-=F 

dt , (1.3.1) 

where u is the velocity and F the force acting on the particle from molecules 
of the fluid surrounding the Brownian particle. As before, we treat one­
dimensional cases, but three-dimensional cases are the same. 

The force F may be divided into two parts. The first part is the frictional 
force and is proportional to the velocity of the particle. If the frictional 
coefficient is denoted by my as in (1.1.10), the frictional force is assumed 
to be 

Fu=-myu. (1.3.2) 

If the Stokes law is assumed for a spherical particle, for example, the fric­
tional coefficient is 

my= 6rra11, (1.3.3) 

where a is the radius of the particle and 11 the viscosity of the fluid. 
The second part of the force is the remainder of the force, F11 subtracted 

from F, and is regarded as random, independent of the motion of the 
particle. This part is called the random force and is hereafter denoted a s  
R(t). 

Then (1.3.1) is written as 

du 
m 

dl 
=- myu +R(t). (1.3.4) 

as a stochastic equation. 

; 
t ' ' i ;s 
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The same consideration can be applied to Brownian motion in the 

presence of a force field, for example, the gravitational field or a harmonic 
force binding the particle elastically to the origin. If the potential of the 
force is denoted by V, the equation of motion becomes 

dp av 
dt = - ox - yp+R (t), 

dx p -- = - = u(t) . 
dt m 

(1.3.5) 

(1.3.6) 

A set of equations of motion containing a random force, like ( 1.3.4) or 
(1.3.5, 6), is called a Langevin equation. 

The random force R (t) is a stochastic process randomly changing in 
time. Brownian motion, u (t) [or p (t)] and x (t) are also stochastic processes 
driven by (generated by] R(t). They are related to R(t) by (1.3.4 or 5, 6). If 
we consider the force as causing the motion, then the random force R(r) 
produces Brownian motion. Thus our problem is to determine the stochastic 
processes u(t) and x(t) from knowing R(t). This is what is meant by 
solving stochastic equations like (1.3.4) or ( 1.3.5, 6). 

A standard method of solving a stochastic equation is harmonic analysis. 
This expresses a motion by a superposition of oscillating functions, which is 
an orthodox method for linear systems. Since the environment is considered 
to be in a stationary condition with constant temperature and pressure, the 
Brownian motion must also be stationary if the particle is aged (kept for a 
sufficiently long time) in the environment. In other words, the probability 
such as ( 1.1.5) must be invariant with respect to a shift in time: 

The processes R(t), u (t) and x(t) are stationary in this sense. 
Let us consider in general a stationary process : (t), a sample of which 

is z (t) observed over a time interval 0 s t sT. This function z (t) is 
expanded in a Fourier series as 

CD 

z(t) = L, a,. eiw.t ' 
11•-oo 

where the frequencies are 

2nn w,==T (n = 0, +I,± 2, . . . L 

( 1.3.8) 

(J .3.9) 

corresponding to the interval T. The function z (t) is considered real so that 
the Fourier coefficient an has the form 

I "Jr • I " JI a,.= an + lun ' a_,.= a,. =a,.- 1 u,. • (1.3.10) 
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CIO z(t) = L a,.ei"'·' (0 �I� T). 
11•-CX) 

(1.3.11) 

.I .... J 

Then the Fourier coefficient a, m (1.3.8) 1s a sample of the random 
variable a,. defined by .; 

t T . 
a,=- J z (t) e-tw.t dt. 

To 
( 1. 3.12) 

Equation (1.3.11) shows that the stochastic process t(l) is expressed by a 
set of a countably infinite number of random variables {a,.}. For the process t(t), the probability is defined as explained in Sect. 1.2 and so the proba­
bilities and expectations are also defined for {a,.}. The expectation value of 
a, is given by 

l T . (a,.) = T I (z(t)) e-tw.t dt. 

It follows that 

(a,.) = 0 (n * 0), 

since (z(t)) is a constant as it  is stationary. For n = 0, obviously 

I T 
(ao) =T! (z(t)) dt =(z). 

( 1. 3.13) 

( 1.3.14) 

A sample of ao is the time average of a sample z (t) of the process z (t) ov�r 
the interval (0, T): 

- IT 
ao = z (r) r = T! z (t) dt . ( 1. 3.15) 

Generally, this need not be equal to (z). A process z (t) is caJled ergodic if 

lim z(t) 7 = (z) 
T-+ex� (1. 3.16) 

holds. 
On the other hand, the expectation (z) is the average of z(t) over the set 

of all possible values of z. This set is not necessarily identical with the set of 
values of z(t) for 0 � t s T. It may well be that different subsets are 
reached from a different starting state z(O), in which case the time average 
becomes different for different z (0). For example, a combination of two 
distinct processes is obviously nonergodic. A nonergodic process is generaiJv 
decomposed into ergodic processes. In most cases, a stationary stochastic 
process is already reduced to such a simple one, so that we may hereafter 
assume ergodicity.ln this sense, a0 = (z) = const and we consider z (t)- (z) to 

� 

J 



1.3 Langevin Equation and Harmonic Analysis 17 

assume that 

(a,.)= 0 (n = 0, + I, . .. ,± co) (1.3.17) 

without losing generality. The averaged strength of the Fourier component 
an is defined by 

(1.3.18) 

The right-hand side of this expression is the sum of mean square averages 
of the real and imaginary parts of the amplitude a,.. When a suitable filter 
is used to select only the frequencies lying in the interval LJw, the strengths of 
these Fourier components are observable. The average intensity /(w) is 

l(w) t1 w  = L (lanl2). (1.3.19) 
w. ia.d w 

The right-hand side of this expression is a sum over all frequencies 
contained in the frequency band. The number of such modes is 

Llw T 
2n/T

= 
2n 

t1w 

because the interval &JJ of successive frequencies in (1.3.9) is 2 niT. We 
may suppose (�) to be continuous in the frequency Wn and write (1.3.19) as. 

l(w) = lim 
2
T 

( l a,.l2) 
T-+«> 1t . (1.3.20) 

to define the intensity spectrum of the process t (t) at frequency w. In fact. 
if z(t) is the noise voltage produced between two terminals of an electrical 
network, I(w) is the intensity of the noise heard by filtering frequencies to 
a narrow bandwidth LJw around (J). In this sense, /((J)) defined by (1.3.20) is 
called the power spectrum of the process : (t). 

The power spectrum is obtained by application of the well-known Wiener­
Khintchine theorem [1.9]. The correlation function for the process z(t) is 

l/J(t) = (z(to) z(to + t)). (1.3.21) 

This represents the correlation between the observed values of t (t) at two 
points in time 10 and 10 + t and is independent of 10 since z(t) is stationary. The 
Wiener-Khintchine theorem asserts that 

I oo /(w) =- f l/J(t) e-i((lt dt 
2n -«> 

holds. Conversely, it holds that 
00 

l/J(t) = J I (w) eioH dw. 
-oo 

(1.3.22) 

(1.3.23) 
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This theorem is proved as follows. From ( 1.3.12) 

) T T 
(la"l2) = -2 J dt1 J dt2 (z(IJ) z(12)) exp [- iw,. (1,- t2)]. 

T o o 

In tbe integrand, the correlation function is dependent only on the titlle 
difference 11- 12. The integration over r, and t, is carried out over the 
square 0 � 11 � T. 0 � t2 � T as shown in Fig. 1.4. The integration is 
divided into two parts. For r, > 12 the integration variables are changed to 
11 -12 = t and 12, for which the Jacobian o(t,, 12)/o(t, l2) = I. Integration 
over 12 is carried out from 0 to T- t, resulting in 

T 
J (T- t) l/>(1) e-iw.t dt, 
0 

since the integrand does not depend on 12• Similarly, integration for the pan 
t1 < 12 yields 

:r 
f (T- t)l/>(-t) e!w.' dt. 
0 

T-t 

(1.3.26) ' 

Fig. 1.4. Changing the integration variables an --=-t<------�-.... t, (1.3.24) 

These results are inserted into (1.3.24) and T is set to infinity. As long as 
the integrals 

00 00 J <P(+ t) e+iw.t dt' J tcf>(+ 1) e+iw.t dt 
0 0 

are convergent, then 

1 [00 00 l /(w)= 21t [4>(t)e-iw1dt+[<P(-t)eiwtdt . 

(1.3.27) 

( 1.3.28) 

Converting the second term to an integral over (-oo, 0) gives (I. 3. 22). 

i 
1 
; 
. 1 
! 
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Instead of Fourier-analyzing over a finite time, we may Fourier-analyze 
over an infinite time interval and write 

00 
z: (I) = f a(w) eiwt dw 

-oo 

l 00 . a(w) = - J z (t) e-,wr dt 
2 1t  -oo 

as Fourier integrals. If z (c) is real, 

a(- w) = a• (w) 

(1 .3.29) 

( 1 .3.30) 

is the complex conjugate of a(w). Furthermore, if z(t) is stationary, it 
holds that 

(a(w) a (w')) = 1 (w) b(w + w'} ( 1 .3.3 1 )  
or 

(a(w) a * (w')) = I (w) b (w - w') , ( 1 .3.32) 

where /(w) is the power spectrum given by ( 1 .3.20). In fact, the left-hand 
side of (1.3.31) is calculated as 

J ao ao (a(w1) a(w2))= (2n)2 Jao dt1 _t dt2 4>(t2 - t1) exp(-iw1 t 1 -i ro2 t2) 

1 ao 1 ao =-2 J </>(t)exp(- i w 1 t)dt · -
2 

J exp[- i(ro1 +w2)-r) d-r . 1t -ao 1t - ao 

With (1 .3.22) we obtain (1 .3.31). It is obvious that (1.3.23) follows conversely 
from (1 .3.29, 31). 

Harmonic analysis is particularly useful for linear stochastic equations 
like (1.3.4). We Fourier-expand the random force as a stationary stochastic 
process, 

00 

R(t) = L R" eiw.r. ( 1.3.33) 
11•-CX) 

In the same way the velocity u(t) of a Brownian particle is expanded as 

00 
u(t) = L Uneiw.t . 

n--oo 

Then the stochastic differential equation ( 1 .3.4) 

mu(t) = - myu (t) + R(t) 

is converted into the relation 

1 R11 
11n = -.--l W11 + )' m 

( 1.3.34) 

( 1 .3.35) 

( 1 .3.36) 
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between the Fourier components. If we write the power spectra of R (t) and 
u(t) as IR and 111, respectively, we immediately obtain from ( 1 .3.20. 36) 

J IR (w) IR (w) lu ( W) = -1 i_w_+_· -y-,.!2 m2 = _w_z_+_i'� m2 

If the Brownian particle is bound to the origin by an elastic force, the : 
Langevin equation is assumed to be 

d2x dx J -+ y- + w�x = - R(t) 
dt dt m ' (1.3.38) 

where x is the displacement and w0 is the natural frequency of the elasti.c · 

binding. Torsional oscillation of a small mirror suspended in a dilute gas is "' 
an example to which harmonic analysis is also directly applicable. The 
power spectrum lx of the displacement is easily seen to be 

lx (J) = 
I IR (w) 

( ) 
!ro3 - w2 + i yw !2 m2 

J /R (w) 
- (w3 - w2)2 + rw2 m2 

in the same way as we derived (1.3.37). 

( 1 .3.39) 

The Wiener-Khintchine theorem { 1 .3 .22, 23) shows that knowing the 
power spectrum is equivalent to knowing the correlation function. When 
I R (co) is known, (1 .3.37 or 39) converts it into 1., (w) or lx (w). so that this solves 
(1.3.35 or 38) to the same extent. As shown in Sect. 1 .2, the solution is 
complete if R (t) is a Gaussian process. 

The nature of the random force R (t) is considered in more detail in the 
following sections. Here we make the simplest possible assumption that the 
power spectrum IR is independent of frequency ( 1 .3.40) I .. when the spectrum is said to be white. Obviously, from (1 .3.23) it follows 
that the correlation function of a process having a white power spectrum � 
has a vanishingly short correlation time, � ; 

(1.3.41 )  

I f  the random force can be described by (1 .3.41), it foiJows from (1 .3.37) with 
(1 .3.23) that 

{ 1 .3.42) 

i § 
J i 1 't 
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namely, 
n/R (u(/1) u(t2)) = -r  e->'1,,-,zl. ( 1 . 3.43) m y  

Thus, the correlation function of velocity of a free Brownian particle decays 
exponentially in time with the decay constant y. In particular, for 11 = t2 , 
(1 .3.43) reduces to 

(u2) = 
n/R -
m2y ( 1 .3.44) 

If the Brownian particle has been kept for a sufficiently long time in the 
fluid at temperature T, the equipartition law 

(1 .3.45) 

must hold for the energy distribution. For (1.3.44) to be consistent with 
this, 

( I  .3.46) 

must hold. In other words, the random force R (if it has a white spectrum) 
must have the intensity given by ( 1 .3.46) so that the Langevin equation 
( 1 .3.35) represents free Brownian motion in thermal equilibrium at temper­
ature T. 

For harmonic Brownian motion, ( 1.3.39) leads 'o 

(t > 0), (1 .3.47) 

if I R is assumed to be constant (white). For a derivation of this result, the 
residues at the poles 

i ( � )1/2 
w = + 2 y + w1 , where w1 = wi - 4 , 

of the integrand are calculated. In the limit t -+  0, this reduces to 

<Px (0) = (x2) = 7t I R = k T . m2yw3 mw3 
Thus (1 .3.46) again guarantees the equipartition law of energy. 

( 1 .3.48) 
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1.4 Gaussian Processes 

A general stochastic process is defined by giving the probabilities (J . l .S) for 
all possible sets of t 1 ,  t2 , • • •  , 111 (n = I, 2, . . .  ). Probabilities of lower hierarchy 
are derived from those of higher hierarchy, but the latter generally contain 
new information not contained in the former. The situation becomes 
simpler for Markovian processes, in which all higher probabilities are 
determined by the transition probability P(xJ , ,, , X2, 12). This kind or 
stochastic process is considered below. Here we take up another class of 
simple processes, namely the Gaussian processes. This is an extension of the normal distribution discussed in Sect. 1.2 to stochastic processes. Just as a 
normal distribution is defined by its second moment or the variance, a 
Gaussian process is completely defined by the correlation function (1.3.21). 

A stochastic process z(t) is Gaussian if the probability distribution of its 
observed values z1 , z2, • • •  , Zn at n time points 11 , 12, • • •  , 1" is an ,_ 
dimensional Gaussian (normal) distribution; namely, W" in ( 1 . 1 .5) has the 
form 

I I n 11 l Wn(ZJ . t, ;  z2, 12; . . . ; Zn, In) = c exp, - -2 L L ajlc (zj - mj)(ZA: - m�c) .. 
j• l k - l  

where ( 1 .4. 1 )  

m1 = (z1) = (z(t1)) ( 1 .4.2) 

is the expectation value of z (I) at time t1 and the matrix 

(ajk) = A  

is positive definite. The elements of its inverse matrix A-' 
correlation functions of the process z (t) 

(A- 1)Jk = ((zj- mJ) (zk - mk)) 

= ((z(t1) - (z(t1))] (z (lt) - (z(rk))]). 

( 1.4.3) 

are the 

( 1 .4.4) 
In order to see this, we use the characteristic function explained in 

Sect. 1.2 in a slightly generalized form. We introduce the parameters 
Ct, C2 , . . .  , (,. corresponding to the n random variables Z1 , t2 , . . .  , t" and 
write the characteristic function of ( 1.4.1) as 

For brevity, we use the vector notations2 

z=(z, , Z2, • • •  , Z11) ,  �=((I t (2, . . .  , (n) 

( 1.4.5) 

2 Note that bold-faced letters are not used for these vectors to avoid confusion with 
random variables 

1 .. 
' 
; 

f J J 
l I I { 
.I 

� i ! 
� ,, � 
( � � 
� > ' 
' 
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and carry out the integration in the following way. Inserting ( 1 .4. 1)  into 
W,, the exponential function in ( 1.4.5) is rewritten as 

exp [- y (z - m) A (z - m) + i ( z] = exp (i(m - t yAy + i(y) 
= exp (i (m - t uA u - i uA v  + f vA v  + i ( u - (v) , 

setting 

m = (m., m2, : . .  , m,) , z - m = y = u + i v .  

Now we choose the vector v by the condition 

Av = (, namely v = A-1 (. 
Then the first-order term of u vanishes, and the integral becomes 

00 00 

<t>(() = exp(i m ( - t (A-1 () J du1 • • •  J du. C exp (- t uA u) . ( 1 .4.6) 
-oo -oo 

Integration along the real axes of Zt . z2 , . . .  , z" was here transformed to that 
along the rea] axes of u. , u2, . . .  , u,. just as for (1.2.21). The integral can be 
explicitly calculated by orthogonal transformation to diagonalize the qua­
dratic form, uAu. But this is not necessary, because we should have <P = l 
for ( 1 = (2 = . . . = (, = 0, as is seen by the fact that W.. is nonnalized by the 
constant C. Therefore, 

( 1.4. 7) 

The moment and cumulant definitions introduced by ( 1 .2.15, 16, 25) can 
easily be generalized to an n-dimensional random variable (t1 , z2, • • •  z,). 
Namely, the (rt , r2 , • • •  , r,) th moment is 

(zp Z22 • • •  T,.•) = J dz1 • • •  J dz,. W (z1, . . .  , Zn) z[' . . . z�· , ( 1 .4.8) 

[ W(z1 , z2, • • •  , z,) is the joint distribution of Z t ,  z2, • • •  , z,.] and the charac· 
teristic function (1 .4.5) is expanded in a power series 

"" (O = � � (iCt)'• . . .  (i CnY· ( '• '·) ..,. L.J • • •  L.J I I Zt • • •  z,. . 
,.-o r,.-o 't . . . . r, . 

( 1 .4.9) 

This gives all the moments, provided that such an expansion is possible. 
The cumulant function 'P ( G is defined by 

<t>(() = exp 'P(O , 'P(C) = In 4> (0. ( 1 .4.10) 
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The cumulants are defined by 

( 1 .4 . 1  I )  
i , 

if the expansion is possible, where L,' means the omission of the term with ' 

'• = r2 = . . .  = r, = 0. Cumulants ·and moments are mutually related by 
(1 .4.1 0), e.g., 

(zt Z2 ZJ) = (z1 Z2 zl)c + (zt) (z2 ZJ)c + (zl) (z1 ZJ)c 

+ (zJ) (z1 z2)c + (zt) (z2)(zJ). 

( 1 .4. 1 2) 
b 
� 
� � As evident in ( 1.2.27), all cumulants, n � 3, are identically zero for a f 
• 

one-dimensional Gaussian distribution. This statement is generalized to ao l 
n-dimensional Gaussian distribution for whioh all cumulants vanish except i 
the first and second, as is seen in ( 1.4. 7) which contains terms only to J 
second order in C. The coefficients of second-order terms are the variance � .� 
matrix (1.4.4). Its element } 

(z(lj) z(t�r))c = (z(t1) z (tk)) - (z(IJ)) (z(tk)) 

= ([z(t1) - (z(r1))] [z(t�r) - (z (t�r))]) (1.4. 13) 

is the correlation function of 4 (t). Therefore. ( 1.4. 7) becomes 

( 1 .4 . 14) 

where 

Thus, the process 4 (t) is completely determined by the expectations and the 
correlation functions since the characteristic function is completely defined 
by these quantities. 

�ume for simplicity that 

m(t) = 0. 

For an arbitrary set of n time points (11 , t2, • • •  , t,), 

< 
{ 0 for odd n ,  

z(tJ ) . . .  z (t,)) = " IT  L.. <P(r1, t�r) for even n ,  
pairing pairs 

( 1 .4.16) 

holds. This is easily seen by comparing the power series expansion or 
( 1 .4.14) [sening m(t1) = 0] in (1 , (2 ,  . . .  (,. and (1.4.9). In ( 1 .4.1 6), the 

� 

l 
I l 
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summation means the following: we divide the set t 1 ,  12 , • • •  , t, (with an even 
n; any of these time points may coincide) into pairs and construct the 
product of 4J(tJ> t�c) for this pairing and sum up such terms for all possible 
ways of pairing. For example, thus 

(z(11) z(t2) z (IJ) z(t4)) 
= 4J(It , l2) </>(13, l4) + </>(It , /3) </>(12, /4) + 4J(tt , /4) </J (12 , / 3 ) .  

In the definition of the characteristic function (1 .4.5), we set 

and take the limit of n -+ oo and J 11 -+ 0 for t0 < t1 < t2 • • •  < t, < t to attain 
the limit 

II II l L � z1 = L, (.(t1) z (t1) A t1 -+ J (.(t') z(t') dt' .  i•l }•I to 
This defines 

� [( (t)) = (exp [ i !. W') z (t') dt' ]) . (1.4.17) 

This is the most general form of the characteristic function for the processes 
t(/) and is called the characteristic functional because it contains an 
arbitrary function (. (1). 

In particular, if z (I) is Gaussian, its characteristic functional is [ I I I I I (/J [(. (1)) = exp i J (. (t') m (t') dt' - 2  J dz, J dt2 </>(11, 12) (. (t1) (. (t2) 
� � � 

(1.4.18) 
corresponding to (1 .4. 14). In other words, the characteristic functional of a 
Gaussian process is completely defined in terms of the expectation m (t) 
and the correlation function 4>(11, z2). If it is stationary, m (t) is a constant so 
that it can be set equal to zero without losing generality. Furthermore, the 
correlation function </>(11, t2) is a function of /1 - t2 only. Thus the char­
acteristic function has the fonn [ I t t I l/> [( (t)] = exp -2 J. dt, J. dt2 </>(t, - 12) (. (t1) (. (t2) • ( 1.4.19) 

If the characteristic functional �{{ (t)) is known, a suitably chosen { (t) gives a 
desired characteristic function. For example, setting " 

c<r> = L c1 d(t - r1) ,  
}•1 ( 1 .4.20) 
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(1.4.17) is reduced to (1 .4.5). By taking a functional derivative of the 
characteristic functional, we can calculate various sorts of expectations. 
provided that the derivative is analytic. 

Gaussian processes are rather common in the real world and ate 
regarded as standards. The reason for this seems to lie in the central l imit 
theorem just in the same way as the Gaussian law of error. Assu m e  that tlt,e · 

random variable z (t) is a sum of independent random variables 

t (t) = .1 Zt (l) + A Z2 (l) + . . .  + A  %11 (t) • ( 1 .4.2 1 )  

where each component is by itself a stochastic process. Then the charac­
teristic functional of z (t) has the form 

rJ> [ ( (t)] = exp { ± IJIJ [ ( (t)]} , 
J-1 

where '11 [( (t)] is the cumulanl function for the characteristic functional or .. �:1(t) and is assumed to be expanded as 

I ., 
� [((t)] = i J ((t1) (�z1 (t1)) dt1 

'• 
J I I 

-2 J dta J dt2 (AzJ(Il) .d zJ (t2))c ((t.) ((/2) + . . . . 
to lo 

If the sums of cumulants are all of the order of n like 

II N L (AzJ(I)) = O(n) , L (Az1(t1) A z1 (tl))c = 0 (n), . . .  , J-1 J-1 
we change the variable to 

y(t) = 
z(t) 
yn 

and obtain its characteristic functional as 

4> [�(1)) = (exp [ i ! � (I') y(l') dt' ]) 
( 1 .4.22) J 

I 
( 1 .4.23) 

l J. 



l.S Brownian Motion Modeled by a Gaussian Process 21 

which approaches the form (1 .4.18) as n -+  oo. Here, O(n- 112) and O(n- 1 ) 
mean that the higher-order terms in the cumulant expansion become 
asymptotically small at these orders. Like the previous discussion of the 
central limit theorem in Sect. 1.2, the above argument is not quite 
satisfactory as a mathematical proof, but it indicates that we may generally 
expect a Gaussian property if a physical process results from a large 
number of independent random processes. More generally, even such a strict 
independence is not necessarily required for the Gaussian property to hold, 
provided that the interaction satisfies certain appropriate conditions not 
specified here. Furthennore, there are certainly import�nt cases where the 
Gaussian properties no longer hold. Physical processes in the neighborhood 
of a phase change are interesting examples. The non-Gaussian nature of 
critical fluctuations has been a central topic in recent progress in statistical 
mechanics. 

Gaussian distributions have remarkable stabilities. If the joint distribu­
tion of the random variables, X1 , X2, • • •  and X,. is Gaussian, any linear 
combination 

II 

J} =  l: qlcxlt 
k-1 

of these variables also has a Gaussian distribution. Likewise, if z (t) is a 
Gaussian process, any linear transformation of it 

b 
y(t) = J c (t, t') t (t') dt', 

II 

is also Gaussian because it holds that 
b 

(y(t)) = J C(t, t') (z(t')) dt', 
a 

b b 
(y(tJ )  y(l2))c: = f dt! f dt2 C(tl , tl) C(/2_, tl) (z (ti) Z (tl))c 

II II 

(1 .4.24) 

(1 .4.25) 

(1 .4.26) 

and cumulants of y(t) higher than the third vanish together with those of 
t(t). In particular, the Fourier coefficients of t (t) defined by ( 1.3.12) have 
a Gaussian distribution if z: (t) is a Gaussian process. 

l.S Brownian Motion Modeled by a Gaussian Process 

The Langevin equation (1 .3.35) depicts Brownian motion as driven by the 
random force R(t). As an idealization of Brownian motion, R(t) is assumed 
to satisfy the following conditions: 

kippenbe
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i) R (r) is a Gaussian process, 
ii) R (t) has a white spectrum, namely, (1 .3.40) holds. � 

·; 
The process u(t) then represents the random change of velocity of a .· 

Brownian particle and is often called the Ornstein-Uhlenbeck process after • 
the authors who treated the problem extensively for the first time [ J . l  0]. � 

In fact, these assumptions seem very plausible if Brownian particles are � 
far larger than the molecules of the surrounding fluid. The force R(t) acting � on a Brownian particle results from a great many impacts from the fluid , 
molecules, so that the Gaussian property is expected to hold by the centra} 
limit theorem. Secondly, the time constant of the motion of fluid molecules 
will be much shorter than the characteristic time of the Brownian particle .J 
if the mass of a Brownian particle is much larger than that of fiuid ! 
molecules. (Rigorously speaking, this is not quite sufficient. As Sect. 1 .6 l 
shows, this idealization of R(t) is legitimate only in the limit of very large � 
mass density of the Brownian particle.) If that is the case, as an idealization � " 
the characteristic time of successive impacts from fluid molecules may he .. 

1 considered as infinitely short. f The Langevin equation l 
. R(t) 
u(t) = - y 11 + -­

m 

is easily integrated to give 

1 R (r') 
u(t) = u(t0) e-Y(I-to) + J e-y(r-r') dt'. 

lo m 

( 1 .5. 1 )  

( 1 .5.2) 

Obviously this has the fonn of ( 1 .4.24) so that u(t) must be a Gaussian 
process if R (t) is Gaussian. 

The power spectrum of u(t) has already been obtained in (1 .3.37) and 
its correlation function by (1 .3.43) under assumption (ii). Therefore, the 
process 11(1) is completely defined. The transition probability P (u0, to I u. t) 
to find the velocity u at time 1 when the velocity was u0 at the initial time t0 
is derived from (1 .5.2) as follows. 

The characteristic functional of u (t) is 

(ei(u(t)) = exp i � u0 exp [- y(t - t0)] - - J dt, J dt2 ( c;2 I I 
2 to to 

(R {t1) R (t2)) ) 
x exp I- y(l - tr) - y(l - /2)] 

m 2 · 

( 1 .5.3) 

This is obtained by replacing z(t) in (1.4.18) by R (I) and ( (t') by 
< exp (-Y (t- t')]/m. However, this is rather obvious from the derivation or 
(1 .4.1 8). If ( 1 .3.41) is assumed further for R(t), the second term in the 

;} 

! � .-1 ! � { 
� � 'i 

"{ � 
•, 

� t .. 
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exponent in the integrand of (1.5.3) is calculated as 
t ' 2n/R J dt1 J dt2 exp [- y(t - t,) - y(t - t2)] -2- b{tt - t2) to to m 

2 I t I 1 -2y(r-r0) 
= .....!!..2!. J dt' e-2y(t-t') = � - e 

. m2 m2 y to 
With (1.3.46), then (1.5.3) becomes 

(e"•(l)) = exp [ i e Uo e->{1-lo) -��(I - e-2>{1-lo) ) <2] . 

This indicates that u(t) has the Gaussian distribution 

(1.5.4) 

( m )112 1 ( m (u-uo e-y(t-to))l) P(uo, tolu, t) = 2 n k T  (1 - e-2Y(t-to) )tl2 exp - 2k T 1 - e-2l'(t to) 
(1.5.5) 

which is the transition probability for (uo, to) -+ (u, t). The expectation of 
the velocity decays exponentially as 

( u (t)) = Uo e -y(t-lo) , ( 1 .5.6) 

if the initial value was u0 at time 10 • This is, of course, to be expected. The 
variance around the expectation grows in time as 

(1.5. 7) 

and approaches the Maxwellian value at t -+  «>. As shown below, the 
distribution ( 1 .5.5) is the fundamental solution of the diffusion equation in 
the velocity space 

a a ( a ) 1 k T 

ot p = ou yu + Du ou P, Du = m 
. (1.5.8) 

The displacement x (t) in the time interval (0, t) is obtained by 
integrating ( 1.5.2) as 

(1.5.9) 

(to = 0, for brevity). Obviously this has a Gaussian distribution i f  u0 and 
R(t) are Gaussian. The second term is transformed into 

• ' R(t ) ' 1 - e-)'(t-t') R (t') J dt2 J dt1 e-y(t,-tJ) 2 = I dt' . o ,, 
m o Y m 
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The characteristic functional of x(t), 

. 
/ ( I - e-Y'

)) 
/ ( 1 1 - e-y(t-t') R (t') )� 

(e'(x<'>) = \ exp i � Uo Y \ exp i � I dt' >' m 1/ ,  
is calculated similarly as for ( 1 .5.3). Assuming the distribution of uo to be 
Maxwellian and using ( 1 .3.44), then [ (u2) ( I - e-r'

) ]  
(ei�X(I)) = exp - e2 -}'- I - y . (1.5. 10) 

\ 
� 
t \ • . 
' 
j ' � . 

• ' Further we set 

(u2) = k T and D = (
u2) = k T m y my 

to rewrite (1 .5.10) as 

(1.5. 1 1 )  I 
� .1 

(e;x(•l) = exp [-e; 2D (t - 1 -ye-")] (1 .5. 12) 
This corresponds to the transition probability P (0, 0 I x, t) of a Brownian 
particle to arrive around x at time t when it was certainly at x = 0 at the 
initial time. The probability is Gaussian and is given by [ ( 1 e-r')]- t/2 { [ ( 1 - e-r')]- ' } 

P(O, O ix, /) =  4nD t - -Y exp - x2 4D r - Y • 

The mean square average (variance) 
interval {0, t) is 

( 1 .5. 1 3) 
of the displacement in the tirne 

I 
i 
l j 1 

(x (r)2) = 2D (r - 1 -

,

e-r'
)

. ( I  5 14) 

I For a short time t � l !y the distribution of x (t) IS Gaussian wit� .the 1 
vanance 1 � l 

( 1 .5. 1  S) ] 
as is seen from (1.5. 1 1 ,  14). In such a short time, the Brownian particle Still J 
keeps its initial velocity. The result (1.5.15) is simply a reflection of the 
initial Maxwellian distribution of the velocity. 

For longer times 1 � 1/y, the Brownian particle repeatedly zig-zags and • 

loses the memory of its initial velocity. It is natural to expect that · 
displacements after such a long time become a diffusion process as discusseo ; 

" in Sect. I. I. In fact, ( 1 .5. 1 3) is then approximated by f .. l 
P(O, O !x. t) � (4x�t)112 exp (- 4�J (t � y-1) ( 1 .5.16) � 
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in accordance with ( 1 . 1 . 19). Furthermore, ( 1 . 5. 1 1 )  is identical with ( 1 . 1 . 1 4). 
Namely, the Einstein relation is obtained here again. The above reasoning 
is not quite the same as that discussed in Sect. 1 . 1 ,  but the essential point 
lies in the assertion that Brownian motion in a medium in thermal 
equilibrium also tends to attain thermal equilibrium. 

1.6 The Fluctuation-Dissipation Theorem 

In the Langevin equation (1.3.4), the force on a Brownian particle was 
divided into the frictional force - m yu and the random force R(t), between 
which a relationship like (1.3.46) exists, indicating that the power intensity 
of R (t) is proportional to the friction coefficient and the thermal energy 
k T. We have also seen that the Einstein relation relates the diffusion 
constant to the friction coefficient. Both express that such a mechanism of 
energy dissipation is closely related to fluctuations in thermal equilibrium 
and they are simple examples of a more general principle called the 
fluctuation-dissipation theorem (1.4]. Chapter 4 deals with a quantum-statist­
ical derivation of this theorem. Here we consider this from the viewpoint of 
the Brownian motion theory. 

As already mentioned, Brownian motion is not limited to Brownian 
particles. It is, generally speaking, a fluctuating motion of a mode in a 
macroscopic dynamical system with a very large number of particles or a 
large number of degrees of freedom. It is particularly simple for a particle 
much heavier than the molecules in a medium or for a mirror in a gas, 
described well by the simple Langevin equation discussed in Sect. 1.3. 
However, various modifications are required for the Langevin equation to 
be applied to more general sorts of Brownian motion. One modification is 
to abandon the assumption of a white spectrum for the random force R (t). 
This means, as seen in the following, that retarded friction is accounted for. 
This is very necessary for applying the theory to more realistic problems for 
which idealizations are not legitimate. 

In the Langevin equation ( 1.3.4) the friction is assumed to be deter­
mined by the instantaneous velocity of the particle. However, in general, 
friction will be retarded so that the Langevin equation should be general­
ized to 

d I } . 1 -d u(t) = - J y(t - t') u(t') dt' + - R(t) + - K(t), t -co m m ( 1 .6. 1 )  

where y(t) expresses the friction retardation. Equation ( 1 .6.1) is called a 
generalized Langevin equation. On the right-hand side. R (t) is the random 
force and K (t) is an external force. The random force is zero on average, 

------------------·-· ·--· ·· 
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satisfying the condition 

J l 

I 
( 1 .6.2) 1 (R{t)) = 0 .  

Suppose now that the external force is periodic as 

K(l) = Ko cos wt = Re : Ko eiw' l . 

Then the average velocity induced by this force is 

(u(t)) = Re lJ.t(W) Ko eiwr: . 

where J.l (w) is the complex mobility for the freq uency w and is given by 

I I 
J.l ( w) = -m 

-i _w_
+
_

y [
-

w
-

J '  
( 1.6.4) 1 

where 
X 

y fw] = J y(l) e-iwr dt 
0 

( J .6.5) 
is the Fourier-Laplace transform3 of the retardation function of friction 
This is obtained from the averaged equation of ( 1 .6. 1 )  

d 1 { J } - (u(t)) = - J y(r - r ') (u(f' ) ) dt' + Re - Ko ei(lj' . 
dt --x. m 

If the particles are charged with e and the partide density is n, the current 
induced by an electric field E is 

j (t) = en (u(t)) = Re le2 n J.l (w) £0 eiwr l 
so that the complex conductivity a(w) is 

e2 n I 

l 
I j of 

a(w) = e2 n ).l (w) = -- -. --- ( 1 .6.6) 
m t w + y (w] ·· 

In fact, i f  we write conductivity, or more generally a complex admittance i n  i this form, y (w] is usually not constant but depends on the frequency w. If f 
we treat such a system from the viewpoint of Brownian motion theory, the l 
retardation function y(r) must be introduced. given as the inverse of ( 1.6.5). i 
3 A Fourier-Laplace transform is defined for the integration range (0. co) in contrast to an 

ordinary Fourier transform with (-co. oc). Conventional Laplace transforms use a 
complex parameters s instead of i w 
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The generalized Langevin equation (1.6. 1 )  is linear so that it can be 
treated by hannonic analysis, Sect. 1.3. The Brownian motion follows the 
equation 

d I } -d u(t) = - J y(t - t') u(t') dt' + - R (t), 
I -oo m 

(1 .6.7) 

if the external force K is zero and the motion is driven only by the random 
force R(t). Now we Fourier-analyze R(t) and u(t) as 

00 00 
R (t) = J R(w) eiw' dw, u (t) = J u(w) eiw' dw 

to obtain 

1 R(w) 
u(w) = 

i w + y [w] m 

from (1.6.7). If R(t) is stationary, u(t) becomes stationary for large enough 
t. The power spectra of the two processes are related to each other by 

I IR (w) lu {w) = 
m2 li w + y(w] 12 , 

as seen from ( 1.3.20). 

(1 .6.8) 

When the spectrum IR (w) for the random force R (t) is given, ( 1 .6.8) 
yields lu (w), from which the correlation function (u (0) u (I)) is obtained by 
the Wiener-Khintchine theorem. If it should represent the velocity distribu­
tion in thermal equilibrium, the spectrum IR (w) is required to fulfill a 
certain condition. The condition is a generalization ·of ( 1.3.46) and is given by 

mkT IR (w) = -- Re {y [w)} or 
1t 

m k T  
(R(w) R•(ro')) = Re {y (w) tS(w - w')} . 

7r 

This means 

( 1 .6.9) 

( 1 .6. 1 0) 

( 1 .6. 1 1 )  

for the correlation function of R(t) as is seen in the following way. The 
function y(t) in (1 .6.5) is defined only for t > 0 but is extended to t < 0 by 
assuming y(t) = y(- t). Then 

1 00 
Re {y (w)} = - J y(t) e-icot dt, 

2 -00 
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from (1.6.5). Equation (1.6. 1 1 ) follows from (1 .6.9, 1 .3.23). In ( 1 .6.9) it mUst t 
be assumed that f 

Re {y [ro)} � 0 (for real ro) , 
since the power spectrum should never become negative. 

t ( 1 .6. 1 2) i 
l If y* [ro} denotes the complex conjugate of y [w], from ( 1 .6.8, 9) l " 
i • <u (r ) u (t + t)) = 

k T coJ ( 1 
+ . 1 ) eiw' dw . 0 0 2nm -co i co + y [w] - I W  + y• (w] 

(1 .6.1 3) � 
We now show that the contribution from the second term of the integrand l vanishes for t >  0. To see this, observe that the function y(ro) defined by 1 
(1.6.5) is analytic in the lower half·plane Im {ro} < 0. For such a function �� the dispersion relation discussed in Sect. 3.6 holds. This gives 

y(w] = _i j _Y'_(v_) dv . 

Setting w =nco�= : w'� then 1 
1 00 w" Re {y [w)} = - J dv y' (v) ( ')2 + ,2 • 7t -(I) v - (l) (t) 

It follows from (1 .6.12) that 

Re {y [w)} > 0 (1m {ro} < 0) 
and 

Re {iw+ l'[w]} > 0 (lm {ro} < 0). 

Therefore, on the right·hand side of (1.6.13) the first term in the bracket is � analytic for Jm {co} < 0. Correspondingly, the second term is analytic for ; 
Im {w} > 0 and henceforth the integral containing this vanishes in ( 1 .6. 1 3), because the integral can be supplemented by a large semicircle on the half­
plane 1m {w} > 0 on which exp(iwt) tends to zero for t > 0 and the 
integrand is analytic inside the closed path of integration. Thus (1 .6. 1 3) is simplified to 

kT co-ie eicoz 
(u(t0) u (to + t)) =-- J . 

[ ] dw. 
2nm -co-ie IW + Y W 

(1.6. 1 4) 

Here the integration path lies just below the real axis of w. If there is no � 
branch cut for the function y [w], the path can be made a closed contour by 1 supplementing with a large semicircle as shown in Fig. J .5. In the limit i 
t -+  0+, the sum of the residues of (iw + y [w])-1 is equal to the residue , 
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around the infinity w = oo. If the condition 

lim y [w] = finite 
1�1 ... oo 

is assumed, namely, if the resistance remains finite for w - oo, the residue 
is simply equal to one. Therefore the equipartition law results: 

lim (u(to) u (to + t)) = (u2) = 
k T

. t-O+ m 

Im I rA�  I 

Fag. 1.5. Integration path for (1.6.14). 
The crosses indicate poles of the inte­
grand 

It is interesting to note that the Einstein-Ornstein-Uhlenbeclc theory of 
Brownian motion as formulated by (1.3.1-4) has to be modified because of 
retardation in viscous resistance due to the hydrodynamic backflow effect 
By a hydrodynamic calculation [ 1 . 1 1  ), it is shown that ( 1.5. 1)  is replaced by 

du ' 
m•-+ p u + a.  J (I - t')-112 ;, (t') dt' = R (r), dt _00 

where 

m• = m + � 7t(la3 
= 

4
3
7t ( Qo + �) a3, 

a. =  6nqa2 (vjrr.)112, 
P = 6 1t vqa . 

(1.6.15) 

Here Q is the density of the fluid surrounding the particle, � is the average 
density of the matter composing the particle and v is the kinetic viscosity 
equal to 'lie. The effective mass m• contains additional inertia due to the 
dragging motion of the fluid. Retardation of viscous resistance is caused by 
the backflow of fluid. Then 

y (w]= {P+(7ti w)112 o:}/m*. 

This function has a branch point at w = 0 and does not satisfy the condition 
(1 .6.12). Accordingly, the previous argument does not apply. However, the 
integral (1.6.14) is easily calculated by transforming the path to the contour 
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(i oo - e, 0, i oo + t, e > 0), giving 

kT 
(u (to) u (to + 1)) = --;  4>(1) ,  m 

where 

f/>(t) = _!_ coJ exp (- z2 r) a z2 dz 
rr - co (z2 - 1)2 + a2 z2 

with 

1 -Jt2 co exp(- (2) (2 d( =-; (J't -L <c2ft - 1)2 + a2 ,2/t 

( 9 e )'12 a = 2 Q> + e/2 , ' = p tIm • . 

In the ideal limit of an extremely heavy particle (a - O),¢(t) is reduced to 
exp(- -r) and the retardation effect disappears. For a finite value of a, the 
retardation effect shows up in a slow decay of the correlation function 

(1 .6. J 6) < 

The presence of such a long-time tail was first observed by Adler and 
Wainwright in a computer simulation of velocity correlation functions ( 1 . 12]. 

Equation (1.6.14) means 

1 1 I co . 
JJ(w) = - . [ = - J (u(to) u (to + t)) e- •wt dt 

m H o + y  w) k T  o 
( 1 .6. 1 7) 

because it is nothing but the inverse transformation of the above expressiofl. 
Equations (1 .6.5, 1 1) can now be written as 

1 co 
my [wJ = kT! (R (to) R (to + t)) e-iCIIt dt ( 1 .6. 1 8) . 

in analogy to ( 1 .6.17), here yielding two fundamental expressions of the 
fluctuation-dissipation theorem (F-D theorem). 

The first expression gives the complex mobility (complex admittance in 
general) in terms of the Fourier-Laplace transform of the correlation ·�; 
function of velocity (flow) and is a generalization of the Einstein relation " .. 
(1.5. 1 1). The second gives the complex resistance (complex impedance in � 
general) in terms of the Fourier-Laplace transform of the correlati on 
function of the random force. Formula ( 1.6. 10), which is equivalent to this, � 
was first obtained by Nyquist as the power spectrum of noise voltage caused l 
by thennal fluctuations in a resistance [ 1 . 1 3]. These two expressions imply ' 
that the response of a system to an external disturbance is related to thennat { ., ., 

.: 
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fluctuations spontaneously produced in the system in the absence of 
external forces. The relation of the dissipative part of the response to 
fluctuations was first recognized by Nyquist (Nyquist theorem) and obtained 
the name fluctuation-dissipation theorem. However, it  is important to 
recognize that the theorem is true both for the dissipative as well as the 
dispe[Sive (nondissipative) parts. 

To distinguish between the two expressions ( 1.6.17, 18), we call the first 
the F-D theorem of- the first kind and the second the F-D theorem of the 
second kind As shown in Chap. 4, the first theorem can be derived from the 
Jinear response theory in a general way [ 1 . 14]. The correlation function on 
the right-hand side of the equation can be analyzed from microscopic 
theories by statistical mechanics. On the other hand, the random force 
appearing in the F-D theorem of the second kind is not simple, because the 
separation of the force into frictional and random forces is itself a complex 
problem of statistical mechanics. In this sense, the F-D theorem of the first 
kind should be regarded as basic and the second as a corollary to the first. 
In the context of this chapter, the two theorems are related to each other 
through the Langevin equation ( 1.6. 1 ). 

The mean square average of the displacement of a Brownian particle in 
a time interval (0, t) is given by 

t t 

(x(t)2) = J dt1 J dt2 (u (tJ )  u (t2)) . 
0 0 

This is transformed into 

lim 
(x(t)2)

-J (u (10) u(to + t')) dt' 
r -+ oo  2t o 

( 1 .6. 19) 

as for ( 1 .3.24), since the correlation function (u(t1) u (t2)) is dependent on 
11 - t2 only as a stationary process. Through ( 1 .2.3J, 6 . 17) we obtain 

D = p (O) k T. 

This shows that the Einstein relation ( 1 .5. 1 1 )  is a special case of the F-D 
theorem of the first kind. 

In (1.6.1, 7) the retarded friction is expressed as an integral from the 
infinite past to the present. It is possible to modify this to 

d 1 1 --
d 

u(t) = - f y(t - t') u (t') dt' + - R (t) , (t > t0) .  t to m ( 1 .6.20) 

For stationary Brownian motion, the initial time t0 in this equation can be 
chosen arbitrarily. In that sense the correlation function obtained from this 
equation does not depend on the choice of t0• 
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The random force R(t) is not the same as R(t) in ( 1 .6.7) and is 
lo 

R(t) = R(t) - f y(t - t') mu(t') dt' .  ( 1 .6.2 1 )1  ' 
-oo '1. 

.; For (1 .6.20) to represent the same Brownian motion as represented by * 
(1 .6.7), R(t) must fulfill the conditions 

(u(t0) .ii(t)) = O  for t > to and 

(ii(to) R (10+ t)) = (R {1,) R (t, + t)) = m k Ty(t) . 

(J .6.22) � 
(1 .6.23) :' 

This can be seen as follows. From ( 1 .6. 17) follow 

J (u(to) u (to+ t)) e-iwt dt = -j (u (10) u (to+ t)) e-iwt dt = � u2) Y(
[
w]

] 
• 

o o t w + y w 

<X) I <u<to> u (to+rJ> e-iwl dr 0 
(u2) i w y[w) 
iw+ y[w] ' 

(1 .6.24) 
I (1 .6.2S) ;. 

and from (1 .6.20) 
' (u{t0) R(to+ t)) (u(t0) u(to+ t)) = - S y(t- t')(u (t0) u (to+ t')) dt' + ....:...-.;.....;..;....--� 

o m 

i 

� ... 
Condition (1.6.22) is necessary for the Laplace transform of the above equa. ! tion to be satisfied by (1.6. 17, 24). Furthermore, 

(R (to) R (t• + 1)) = m2 (u (t.) [ u (t• + t) + !  y(t - t') u (t• + t') dt' ]} , 

which yields 
00 

I (R(to)R(to+ t)) e-iwtdt= m2 (u2) y (w] 
0 

·' 

.. 
' ... 

' 
r 

by (1 .6. 17, 24, 25). Therefore ( 1 .6.23) should hold. We can show by direct · 

calculation [I .  I 5) using (1 .6.21) that for an arbitrary t1 > 10 
(R(to) .ii (to+ t)) = (R(I1) ii (t1 + t)) , 

' 
. 

! 

although R(t) is by itself nonstationary since it depends on the arbitrarily 
chosen initial time t0• Despite such a somewhat unnatural artifice, the forlll · 

of the Langevin equation ( 1 .6.20) is sometimes more convenient than that 
of (1 .6.7). As shown in Sect. 2.9, there is a way of transforming the equation 
of motion into this form which gives a basis to formulate a statistical theol')t 
of Brownian motion. 
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Condition ( 1 .6.22) means that the random force R (t) is uncorrelated (in 
a weak sense) with u (10). This does not, however, mean causality, because 
R (t) is generally correlated with u(t) in the future as well as in the past. 
From ( 1 .6.2 1 )  we can show that 

t-to 

(u(t)R (I + r)) = m J y(r+ t') (u (0) u (t')) dt' 
0 

and from ( 1 .6.7) 
CJ:) 

(u(t) R (r + r)) = m f y(r+ t') (u(O) u (t')) dt' . 
0 

( 1 .6.26) 

( 1 .6.27) 

Both expressions tend to zero with increasing r to oo .  But they are not equal 
to zero except when there is no retardation, where y (t) is a delta function and 
both correlation functions are zero for r > 0 and equal to 2 my (u2)exp(yr) 
for r < 0. In general cases of retarded friction, the random force must be 
correlated with the velocity in the past, which is not surprising. 


